• Title/Summary/Keyword: long electrode

Search Result 415, Processing Time 0.032 seconds

Development of Software for Electrostatic Precipitator Design (전기집진기 설계소프트웨어 개발)

  • 조현덕;박기서;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.429-433
    • /
    • 1994
  • Electrostatic precipitator is the equipment that separates dust particles from the gas in which they are susponded. Specially, in establishing industrial electrostatic precipitatior, corparations would send to a customer technical papers to accept an order. And, they design detail drawing after accept an order. Then, since the basic technical design of electrostatic precipitator is very complex, it takes long time. Thus, for competitiveness in these industries, the developement of software about technical design is important. In this study, the developed software is called 'KOCO', the simpler form for KOrea Cottrell Co. Ltd., deals with a basic technical design of industrial electrostatic precipitator. From using the software, design time was veryshort, design errors reduced largely, and the standardization of design could be carried out.

  • PDF

Fabrication of Sputtered Gated Silicon Field Emitter Arrays with Low Gate Leakage Currents by Using Si Dry Etch

  • Cho, Eou Sik;Kwon, Sang Jik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.28-31
    • /
    • 2013
  • A volcano shaped gated Si-FEA (silicon field emitter array) was simply fabricated using sputtering as a gate electrode deposition and lift-off for the removal of the oxide mask, respectively. Due to the limited step coverage of well-controlled sputtering and the high aspect ratio in Si dry etch caused by high RF power, it was possible to obtain Si FEAs with a stable volcano shaped gate structure and to realize the restriction of gate leakage current in field emission characteristics. For 100 tip arrays and 625 tip arrays, gate leakage currents were restricted to less than 1% of the anode current in spite of the volcano-shaped gate structure. It was also possible to keep the emitters stable without any failure between the Si cathode and gate electrode in field emission for a long time.

Design of Erase Waveform for Stabilizing Reset Discharge in Mid-gap AC Plasma Display Panels (중간간격을 갖는 교류형 플라즈마 디스플레이 표시기의 소거파형 연구)

  • Yoon, Su-Han;Seo, Jeong-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.993-998
    • /
    • 2011
  • In this paper we suggest new criteria for the classification of the electrode gap between common and scan electrodes. The electrode gap is categorized as a short, middle, and long gap according to the criteria. Among these structures, we focus on the erase waveform of a mid-gap structure. we report an unstable discharge arising from the erase ramp period in a mid-gap structure. Based on the Vt close curve, we analyze the unstable discharge at various conditions. Our analysis reveals that the unstable discharge is ignited between surface electrodes and caused by un-erased wall charges accumulated on the outer edges of electrodes. By reducing the voltage level of the last sustain pulse, the problem is solved.

New PDP cell designs for high luminous efficiency and radiation transport model in PDP

  • Yang, Sung-Soo;Shin, Seung-Won;Kim, Hyun-Chul;Lee, Jae-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.590-593
    • /
    • 2002
  • Using two- and three-dimensional fluid simulation codes, we have suggested several new plasma display panel (PDP) cell structures that have high luminous efficiency compared with conventional structure. To improve the luminance and discharge efficiency, we utilize long discharge path, lower electric field region, and reduction of power consumption by adding one auxiliary electrode or reducing the electrode area. Consequently, luminous efficiency increases about 1.8 times. Furthermore for the resonance radiation trapping effect in PDP system, we have described a self-consistent radiation transport model coupled with fluid simulation using modified Holstein's equation.

  • PDF

Copper Electrode Material using Copper Formate-Bicarbonate Complex for Printed Electronics

  • Hwang, Jaeeun;Kim, Sinhee;Ayag, Kevin Ray;Kim, Hongdoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.147-150
    • /
    • 2014
  • Copper ink has been prepared by mixing copper(II) formate and 2-ethyl-1-hexylammonium bicarbonate (EHABC) to overcome some weak points such as aggregation and degradation of copper nano-type ink. Ink was coated on glass substrate and calcined at $110^{\circ}C$ to $150^{\circ}C$ to generate electrically conductive copper film under two different atmospheres such as nitrogen gas and gaseous mixture of formic acid and methanol. The lowest resistivity of $1.88{\mu}{\Omega}{\cdot}cm$ of copper film was obtained at $150^{\circ}C$ in gaseous formic acid condition. The long-term resistivity shows to increase from $1.88{\mu}{\Omega}{\cdot}cm$ to $2.61{\mu}{\Omega}{\cdot}cm$ after one month.

Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition (원자층증착법을 이용한 수소 생성용 광전기화학 전극 소재 개발 동향)

  • Han, Jeong Hwan
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.

Hybrid Capacitors Using Organic Electrolytes

  • Morimoto, T.;Che, Y.;Tsushima, M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.174-177
    • /
    • 2003
  • Electric double-layer capacitors based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle-life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is about 6 Wh/kg at a power density of 500W/kg which is smaller as compared with that of batteries and limits the wide spread use of the capacitors. Therefore, a new capacitor that shows larger energy density than that of electric double-layer capacitors is proposed. The new capacitor is the hybrid capacitor consisting of activated carbon cathode, carbonaceous anode and an organic electrolyte. Maximum voltage applicable to the cell is over 4.2V that is larger than that of the electric double-layer capacitor. As a result, discharged energy density on the basis of stacked volume of electrode, current collector and separator is more than 18Wh/l at a power density of 500W/l.

Characteristic of Facing Discharge Front plate Address Electrode Structure in AC PDP

  • Cho, Hyun-Min;Kim, Dong-Hwan;Song, In-Cheol;Kim, Yun-Gi;Ok, Jung-Woo;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.104-107
    • /
    • 2009
  • In order to improve discharge characteristics in AC PDP, we suggest FDFA (Facing Discharge Front plate Address Electrode) structure. By adopting both long facing discharge electrodes and address electrodes in front plate, the FDFA structure make it possible to gain a high luminance, low power consumption, and a high luminous efficiency.

  • PDF

The modification of materials for flexible Dye-Sensitized Solar Cells

  • Kim, Chang-Ho;Han, In-Young;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1560-1563
    • /
    • 2009
  • We fabricated Dye-Sensitized Solar Cells(DSSCs) which are modified by using liquid crystals(LCs) and electro-deposition on cathode electrode in order to apply to flexible DSSCs. We deposited Pt metal layers on ITO electrode through the method of electro-deposition process during low-temperature. We could expect the long-term stability by using ionic liquid(IL) and liquid crystals(LCs). We can also see the enhancement of efficiency through orientation of LCs in gel-state electrolyte using liquid crystals at the DSSCs.

  • PDF

Effect of Auxiliary Address Pulse on Face-to-face Sustain Electrode Structure in AC-PDP

  • Kim, Bo-Sung;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.605-608
    • /
    • 2007
  • The discharge characteristics of the face-to-face sustain electrode structure employing auxiliary address pulse are investigated under a sustain driving frequency of 20 kHz and various auxiliary address pulse widths (500 ns, $1{\mu}s$, $2\;{\mu}s$) in the 6-in. test panel (42-in. Full HD grade) with a pressure of 450 Torr and a 4 % Xe-content. The luminance and the luminous efficiency at the auxiliary address pulse width of 500 ns are improved more than these of $1\;{\mu}s$ and $2\;{\mu}s$. At the auxiliary address pulse width of 500 ns, the luminous efficiency shows about 0.96 lm/W at the auxiliary pulse of 90 V and the sustain voltage of 260 V.

  • PDF