• Title/Summary/Keyword: long Shaft

Search Result 153, Processing Time 0.03 seconds

Deep Learning based Abnormal Vibration Prediction of Drone (딥러닝을 통한 드론의 비정상 진동 예측)

  • Hong, Jun-Ki;Lee, Yang-Kyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.67-73
    • /
    • 2021
  • In this paper, in order to prevent the fall of the drone, a study was conducted to collect vibration data from the motor connected to the propeller of the drone, and to predict the abnormal vibration of the drone using recurrent neural network (RNN) and long short term memory (LSTM). In order to collect the vibration data of the drone, a vibration sensor is attached to the motor connected to the propeller of the drone to collect vibration data on normal, bar damage, rotor damage, and shaft deflection, and abnormal vibration data are collected through LSTM and RNN. The root mean square error (RMSE) value of the vibration prediction result were compared and analyzed. As a result of the comparative simulation, it was confirmed that both the predicted result through RNN and LSTM predicted the abnormal vibration pattern very accurately. However, the vibration predicted by the LSTM was found to be 15.4% lower on average than the vibration predicted by the RNN.

Short Humeral Stems in Shoulder Arthroplasty

  • Oh, Hwang Kyun;Lim, Tae Kang
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • Since the introduction of shoulder arthroplasty by Neer in 1974, the design of not only the glenoid component but also the humeral component used in shoulder arthroplasty has continually evolved. Changes to the design of the humeral component include a gradually disappearing proximal fin; diversified surface finishes (such as smooth, grit-blasted, and porous coating); a more contoured stem from the originally straight and cylindrical shape; and the use of press-fit uncemented fixation as opposed to cemented fixation. Despite the evolution of the humeral component for shoulder arthroplasty, however, stem-related complications are not uncommon. Examples of stem-related complications include intraoperative humeral fractures, stem loosening, periprosthetic fractures, and stress shielding. These become much more common in revision arthroplasty, where patients are associated with further complications such as surgical difficulty in extracting the humeral component, proximal metaphyseal bone loss due to stress shielding, intraoperative humeral shaft fractures, and incomplete cement removal. Physicians have made many attempts to reduce these complications by shortening the stem of the humeral component. In this review, we will discuss some of the limitations of long-stem humeral components, the feasibility of replacing them with short-stem humeral components, and the clinical outcomes associated with short-stemmed humeral components in shoulder arthroplasty.

The Ultrastructure of Osteogenesis in Distal Extremity of the Distal Phalanges of Human Fetus (인태아 수지말절골의 골화에 관한 전자현미경적 연구)

  • Yoon, Jae-Rhyong;Kim, Sang-Yong;Nam, Kwang-Il
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.177-195
    • /
    • 1996
  • Fine structure of the processes of intramembranous ossification and endochondral ossification at the tip of the distal phalanx of human fetuses was studied by electron microscopy. In 50 mm fetus, intramembranous ossification of the tip of cartilaginous phalanx was first noted. The osteoblasts of the perichondral zone of tip of cartilaginous phalanx started to lay down a thick membranous bony lamella. Most of the hypertrophied chondrocytes in the marginal parts of tip of the distal phalanx remained viable after being embeded in mineralized cartilaginous septa. The tuberosity of the distal phalanx was formed by membranous bony trabeculae on the exterior of the subperiosteal cap at 80 mm fetus. At this stage endochondral ossification was first observed in distal extremity of the distal phalanx. The maority of hypertrophied chondrocytes in the center of distal extremity appeared to be disintegrating. Resorption of calcified matrix was undertaken by perivascular cells and chondroclasts. From the periosteum, zone of calcification, vascular sprouts expanded within a recently opened lacunae, and the invading osteoblasts laid down osteoid and bone. After 120 mm fetus, endochondral and subperiosteal ossification proceeded in only one direction, just proximally. These findings demonstrate that intramembranous ossification, calcification, and endochondral ossification start at tip of the distal phalanx instead of at the center of the shaft, as was the case in other long bones.

  • PDF

Drilled Shaft Designs and Constructions using Pile Load Tests at the Government-Financed Section of Incheon Bridge (재하시험을 활용한 인천대교 국고구간 현장타설말뚝의 설계와 시공)

  • Cho, Sung-Min;Jeon, Byeong-Seob;Chung, Il-Hwan;Choi, Go-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.562-573
    • /
    • 2006
  • Incheon Bridge which will be the world's 5th long cable-stayed bridge in 2009 has been built under the management by Korea Highway Corporation. Incheon Bridge consists of several special-featured bridges and construction sections are divided into two groups, the private investment section with the foreign concessionaire and the government-financed section. 8 pile load tests were performed to investigate the behavior of rock-embedded large-diameter drilled shafts at both sections. Among these, 4 tests at the government-financed section have been utilized to adjust the detailed designs that were carried out individually as well as to find the actual bearing capacity of the ground prior to the commencement of constructions under the joint control of all contractors. Comprehensive procedures of the design and the construction of foundations using pile load tests were introduced.

  • PDF

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

A Study on the Process Improvement of Commutator Press Fitting by 6 Sigma Process (6시그마 프로세스를 이용한 정류자(Commutator) 압입 공정개선에 관한 연구)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Yang, Se-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.37-42
    • /
    • 2005
  • Recently $6{\sigma}$ quality control is an most important strategy to many enterprises in order to be a top company in the world, because it is an excellent scientific method to achieve the best quality control for their management and products. SY company is a small and medium one that has the quality problem for a long time such as occurring cracks on the surface of commutator at his assembly line while being assembled a rotor shaft and commutator of DC motor. This research was started to improve this problem by $6{\sigma}$ process, and as the results of this study, first, to find three vital fews, second, to get an achievement of about 21% improvement for the fracture strength of commutator, and third, to be recognized to change into $6{\sigma}$ quality control in SY company.

  • PDF

Research & Development of High Performance & Multi-Functional New Grouting Materials for Ground Improvement & Reinforcement (고성능 다기능 특수 그라우트 신재료 개발 및 기초지반보강재로의 사례 연구)

  • Park, Bong-Geun;Cho, Kook-Hwan;Na, Kyung;Yoon, Tae-Gook;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.338-350
    • /
    • 2010
  • As existing materials for ground reinforcement, chemical grout material using cementitous materials and waterglass was used. But many problems in terms of ground reinforcement effects were implicated. In this study, for development and applicability verification of new materials, viscosity, fluidity, permeability, Self-Leveling, keeping of drilled hole, antiwashout underwater, resistance of water (groundwater dilution and minimize material eluting) and the early strength and long-term strength characteristics of developed materials was confirmed, and material standards, and establishing construction standards for the various model tests were conducted. As a result, high viscosity, flowability, permeability and keeping of drilled hole characteristics are excellent, in addition to the early strength properties, dilution does nat occur to groundwater, including groundwater is available for dealing with environmental issues. Application of basic and reinforcement method by Filler function in addition to structure can also or development of a new concept can be expected. In addition, middle and large-diameter drilled shaft, micropile, ground anchors, soil-nailing, steel pipes multi-grouting reinforcement for cement injection process could be used enough to even be considered.

  • PDF

A Study on Components Load of 5MW Wind Turbine Pitch Drive (5MW 풍력용 Pitch Drive 구성품의 부하에 관한 연구)

  • Kim, Dong-Young;Lee, In-Bum;Liang, Long-Jun;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.115-120
    • /
    • 2014
  • Wind power is a type of clean energy source which does not produce carbon dioxide. The wind turbine industry is considered as a major growth industry in many countries. The main cause of wind turbine failure arises in the wind turbine gearbox, and the main type of damage occurs in the bearings and gears. Therefore, predictions of gear and bearing damage are very important to ensure the reliability of the wind turbine reducers used in these systems. In this research, in order to optimize the wind turbine reducer, a series of simulations and redesigns was done using the tool RomaxDesigner. The RomaxDesigner model was used to analyze the bearing life of the duty cycle for a 5 MW wind-turbine pitch drive and to calculate the load in operating states. The reducer was designed to satisfy the life requirement by analyzing bearing damage and calculating the stress values of the main parts of the reducer.

A study on the calculation of synthesized torsional vibration for the marine diesel engine shafting by the mechanical impedance method (기계적 임피던스법에 의한 박용디젤기관 추진축계의 합성비틀림진동 계산에 관한 연구)

  • 박용남;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.146-155
    • /
    • 1986
  • Until recently, the calculation of torsional vibration for the marine diesel engine shafting has been performed only for vibratory stresses of resonant points and vibratory stresses for other engine speeds are determined by the estimation. With the advent of energy-saving engines which have a long stroke and a small number of cylinders, the first major critical torsional vibration of the propulsion shaft appears ordinarily near the MCR speed of engine and the flank of its vibratory stress exceeds now and then the limit stress defined by the rules of Classification Society. In order to know the above condition in the design stage of propulsion shafting, it is necessary to calculate the forced torsional vibration with the damping of propulsion shafting for all orders and to synthesize its calculated results according to their phase angles. In this study, the forced torsional vibrations with the damping of propulsion shafting are calculated for several orders by mechanical impedance method, and their results are synthesized. A computer program for above calculations are developed and some test-runs of the developed program are performed for propulsion shaftings of actual ships. The results of calculations are compared with measured values and also with those of the modal analysis method. They show fairly good agreements and the developed program is checked up on its reliability.

  • PDF

Surface Finishing of Ballscrew by Abrasive Wheel Brush (연마재함유 휠브러쉬에 의한 볼스크류 연마기술)

  • 이응숙;김재구;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1049-1052
    • /
    • 1997
  • The pupose of this study on the surface finishing is to examine the performance of brushing as a means of reducing the surface roughness of the precision theaded shafts in ball screw assemblies. Ball screws provide superior performance compared to other types of screw feeds in terms of static and dynamic rolling resistance,backlash,and wear characteristics. The Reduction of the surface roughness of the lead shaft in ball screw assembiles is essential for precision movement,high speed/low noise tracel, and for low wear/long life. To reduce machine dependent errors that would influence the surface roughness compared with other lapping or polishing techniques,experiments will be performed using special wire brushes to polish precision ground shafts. The best results were obtained using the Al /sab 2/O /sab3/ brushes, with the Al /sab 2/O /sab3/ #500 grit brush producing a surface finish of approximately 0.7 .mu.m, and the Al /sab 2/O /sab3/ #600 grit producing a surface finish of approximately 0.8 .mu.m. Both of these results were produced at the highest wheel polishing speed of 3520 rpm. The SiC #500 brush produced a surface roughness of approximately 1 .mu.m at 3520 rpm.

  • PDF