• Title/Summary/Keyword: logical reasoning

Search Result 136, Processing Time 0.025 seconds

The Effect of Inquiry Teaching Strategy Enhancing the Logical Thinking Skill through the Science Teaching about the 1st Year Students of the Junior High School (과학 수업에서 논리적 사고력 강화 탐구 교수 전략이 중학교 1학년 학생들의 논리적 사고력에 미치는 효과)

  • Hong, Hyein;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.667-680
    • /
    • 2014
  • The purpose of this study was to develop teaching stratege focused on Conservational reasoning, Proportional reasoning, Variable-controlling reasoning, Probabilitic reasoning, Correlational reasoning, Combinational reasoning and investigate its effects on enhancing students' logical thinking skills through the science teaching on common education. And the teaching materials was implemented to 110 students in middle school over about six months. The results indicated that the experimental group presented statistically meaningful improvement in logical thinking skills (p<05). Especially, this teaching stratege was effective on Conservational reasoning, Variable-controlling reasoning, Combinational reasoning but was not effective on Proportional reasoning, Probabilitic reasoning, Correlational reasoning (p<.05). Logical thinking according to the teaching strategy skill was not affected by gender, cognitive level, academic achievement (p<.05).

Correlates of Logic Performance: The Relationship Between Logic Performance and General and Logical Reasoning Skills

  • Emin, Aydin;Yavuz, Erdogan;Safak, Ozcan
    • Research in Mathematical Education
    • /
    • v.12 no.3
    • /
    • pp.201-213
    • /
    • 2008
  • The main purpose of this study is to explore the relationship between the 'logical reasoning skill' and performance in the logic unit that is part of the grade 9 syllabus in mathematics in Turkey. After the teaching of the logic unit, an achievement test, a general skills test and the test of logical reasoning were administered to the 80, 9th year high school students. Pearson Moments Correlation coefficient was used for the analysis of the data to determine the relations between the variables. In addition to that to obtain the most suitable regression explaining the students' performances in the logic unit, stepwise multiple regressions analysis was used. At the end of the study, statistically significant relations were found between the students' performance in the logic unit and their logical reasoning skills, their results of the shape recognition test from the general skills battery and their overall performance in the mathematics lesson.

  • PDF

Fuzzy Inference Network and Search Strategy using Neural Logic Network (신경논리망을 이용한 퍼지추론 네트워크와 탐색전략)

  • 이말례
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule - inference network. and the traditional propagation rule is modified.

  • PDF

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF

A Meta-analysis on the Logical Thinking Ability of Korean Middle-School Students - Meta-analysis of the researches between 1980 and 2000 - (우리나라 중학생들의 논리적 사고 능력에 대한 메타 분석 - 1980 ${\sim}$ 2000년까지의 학술지 게재 논문을 중심으로 -)

  • Kim, Young-Min;Kim, Soo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.4
    • /
    • pp.437-449
    • /
    • 2009
  • The purpose of the study is to meta-analyze research results on Korean students' logical thinking ability. The results of meta-analysis on the research studies between the year 1980 and the year 2000 show that about 40-50% of Korean middle school students have conservation reasoning, proportional reasoning and combinatorial reasoning abilities, and that about 25-30% of them have control of variables and probability reasoning abilities. In addition, only 8% of the Korean middle-school students have correlational ability. When comparing their logical thinking ability results with those of Japanese and American middle-school students, The ratio (32.6%) of Korean middle-school students who have formal thought ability is a little higher than that of American students (30.6%), but much lower than that of Japanese students (50.1%).

An Investigation on Chemistry Problem-Solving Strategy of Middle School Student (중학생의 화학 문제해결 전략 조사)

  • Noh, Tae-Hee;Jeon, Kyung-Moon
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.1
    • /
    • pp.75-83
    • /
    • 1997
  • The purpose of this study was to determine the strategies that middle school students used in solving problems concerning density and solubility. These were compared in the aspects of problem contexts for 42 students of varying logical reasoning ability, spatial ability, and learning approach. A coding scheme used consists of five categories: reading & organization, production, errors, evaluation, and strategy. Students' protocols were analyzed after intercoder agreement had been established to be .95. The results were as follows: 1. Students had more difficulties in reading and organizing the problems in everyday contexts than in scientific contexts. Students at the concrete-operational stage and / or surface approach were more likely to have difficulties in reading and organizing the problems than those at the formal-operational stage and / or deep approach. 2. Students tended to split up the solubility problems into sub-problems and to solve the density problem in everyday contexts in random manner. These were significantly correlated with the test scores concerning logical reasoning ability, spatial ability, and learning approach at the .1 level of significance. 3. Major errors in solving the density problems were to disregard the given information or generated and to use inappropriate information. Many errors in solving the solubility problems were found to be executive errors. The strategy to use the information given appropriately was positively related to students' logical reasoning ability, spatial ability, and learning approach. 4. More evaluation strategies were found in everyday contexts. Their strategies to grasp the meaning of answers and to check the math were significantly related to students' logical reasoning ability. 5. Students used the random trial-and-error strategy more than the systematic strategy and the systematic trial-and-error strategy, especially in everyday contexts. The strategies used by the students were significantly related to students' logical reasoning ability, spatial ability, and learning approach.

  • PDF

A Study of the Relationship Between Cognitive Ability and Information Searching Performance

  • Kim, Chang-Suk
    • Journal of Korean Library and Information Science Society
    • /
    • v.35 no.1
    • /
    • pp.303-317
    • /
    • 2004
  • The purpose of this study was to develop a framework for predicting searching performance through an understanding of how cognitive ability relates to searching process and outcome. Specifically, this study examined the relationship between spatial visualization, logical reasoning, integrative reasoning, and information searching process and outcome. Information searching process was assessed by seven search process indicators: (1) search command selection: (2) combination of search commands; (3) application of Boolean logic: (4) application of truncation; (5) use of limit search function; (6) number of search statements; and (7) number of search errors made. Searching outcome was assessed by the number of correct answers to search questions. Subjects first took three standardized cognitive tests that measured cognitive abilities, and performed online catalog searching in response to seven information search questions. The searches were logged using Lotus ScreenCam, and reviewed for the analysis. Factor analysis was used to find underlying structures of the seven search process variables. Multiple regression analysis was applied to examine the predictive power of three cognitive variables on three extracted factors, and search outcome. Results of the data analysis showed that individual differences in logical reasoning could predict information searching process and outcome.

  • PDF

A Study on Teaching of Logical Thinking Students with Non-formation in Probabilistic Reasoning and Combinational Reasoning (확률논리와 조합논리 미형성 학생의 논리지도에 대한 연구)

  • Kim, Youngshin;Park, Ae-Ryeon;Lim, Soo-min;Jeng, Jae-Hoon;Kim, Soo-Wan;Song, Ha-Young
    • Journal of Science Education
    • /
    • v.33 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • Probabilistic reasoning and combinational reasoning are essential to build a logical thinking and a process of thinking dealing with everyday life as well as scientific knowledge. This research aims at finding the optimal period to teach reasoning to the students who haven't developed probabilistic reasoning and combinational reasoning. The treatment program was performed for 20 students from each grade who couldn't develop two parts of reasoning. The treatment program using baduk stones and cards was performed repeatedly, focusing on the specific activities. After four weeks of treatment program, the test to check the development of probabilistic reasoning and combinational reasoning was performed again and the changes of reasoning development were identified. After giving treatment program for reasoning development, 15.0%, 25.0% and 40.0% of improvement in the 4th, the 5th, the 6th graders respectively were shown. With regard to the combinational reasoning, the results showed the improvement of 20.0% in the 4th grades, 25.0% in the 5th graders and 63.2% in the 6th graders. As a result of research in the above, students, who were not formed probabilistic reasoning and combinational reasoning, could be known to be enhanced through learning, but to fail to be formed the qualitative change like the cognitive development. It is expected that this research can contribute to the improvement of students' cognitive level and there would be more active researches in different fields to improve the cognitive level of the 6th graders who are in their optimal periods to learn two parts of reasoning.

  • PDF

Construct of Fuzzy Inference Network based on the Neural Logic Network (신경 논리 망을 기반으로 한 퍼지 추론 망 구성)

  • 이말례
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Fuzzy logic ignores some information in the reasoning process. Neural network is powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule-inference network. And the traditional propagation rule is modified. Experiments are performed to compare search costs by sequential searching and searching by priority. The experimental results show that the searching by priority is more efficient than the sequential searching as the size of the fuzzy inference network becomes larder and an the number of searching increases.

  • PDF

Neural Logic Network-Based Fuzzy Inference Network and its Search Strategy (신경논리망 기반의 퍼지추론 네트워크와 탐색 전략)

  • Lee, Heon-Joo;Kim, Jae-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1138-1146
    • /
    • 1996
  • Fuzzy logic ignores some informations in the reasoning process. Neural networks are powerful tools for the pattern processing. However, to model human knowledges, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy logical reasoning, we construct fuzzy inference net-work based on the neural logic network, extending the existing rule-inferencing network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search cost for searching sequentially and searching by means of priorities.

  • PDF