Dwarf is a highly compressed structure, which compresses the cube by eliminating the semantic redundancies while computing a data cube. Although it has high compression ratio, Dwarf is slower in querying and more difficult in updating due to its structure characteristics. We all know that the original intention of data cube is to speed up the query performance, so we propose two novel clustering methods for query optimization: the recursion clustering method which clusters the nodes in a recursive manner to speed up point queries and the hierarchical clustering method which clusters the nodes of the same dimension to speed up range queries. To facilitate the implementation, we design a partition strategy and a logical clustering mechanism. Experimental results show our methods can effectively improve the query performance on data cubes, and the recursion clustering method is suitable for both point queries and range queries.
리엔지니어링에서 기존 소프트웨어 시스템의 환경변화에 따라 대부분 논리적 실행을 중심으로 집단화를 실행해왔으나 본 논문에서는 기존 소스 프로그램을 중심으로 각 모듈간의 정보공유측면에서 효율적으로 집단화할 수 있는 방안을 제안하였다. 정보고유를 이용한 관련 모듈들의 집단화를 위해서 모듈 집단간 휴리스틱 측정방법을 근간으로 본 논문에서 제안한 유사성 및 단일성 알고리즘을 이용한 측정을 한 후 그 결과를 평가하였다. 이를 통해 모듈 및 프로시져의 관련성을 중심으로 관련 모듈 및 프로시져의 정리 및 집단화를 유도할 수 있었다. 소프트웨어 시스템의 환경변화에 따른 기존 시스템을 정보공유를 중심으로 집단화함으로써 과적으로 소프트웨어 시스템을 재구축할 수 있는 방법론을 제시하였으며, 그 구현 가능성을 실제 예를 통해서 보였다.
Kim, Eun-Ju;Kim, Dong-Joo;Park, Jun-Ho;Seong, Dong-Ook;Lee, Byung-Yup;Yoo, Jae-Soo
International Journal of Contents
/
제8권2호
/
pp.13-18
/
2012
In wireless sensor networks, an energy efficient data gathering scheme is one of core technologies to process a query. The cluster-based data gathering methods minimize the energy consumption of sensor nodes by maximizing the efficiency of data aggregation. However, since the existing clustering methods consider only uniform network environments, they are not suitable for the real world applications that sensor nodes can be distributed unevenly. To solve such a problem, we propose a balanced multi-hop clustering scheme in non-uniform wireless sensor networks. The proposed scheme constructs a cluster based on the logical distance to the cluster head using a min-distance hop count. To show the superiority of our proposed scheme, we compare it with the existing clustering schemes in sensor networks. Our experimental results show that our proposed scheme prolongs about 48% lifetime over the existing methods on average.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권4호
/
pp.665-683
/
2011
Wireless sensor networks (WSN) consist of a large amount of sensor nodes distributed in a certain region. Due to the limited battery power of a sensor node, lots of energy-efficient schemes have been studied. Clustering is primarily used for energy efficiency purpose. However, clustering in WSNs faces several unattained issues, such as ensuring connectivity and scheduling inter-cluster transmissions. In this paper, we propose a location-based spiral clustering (LBSC) algorithm for improving connectivity and avoiding inter-cluster collisions. It also provides reliable location aware routing paths from all cluster heads to a sink node during cluster formation. Proposed algorithm can simultaneously make clusters in four spiral directions from the center of sensor field by using the location information and residual energy level of neighbor sensor nodes. Three logical addresses are used for categorizing the clusters into four global groups and scheduling the intra- and inter-cluster transmission time for each cluster. We evaluated the performance with simulations and compared it with other algorithms.
Development of the system that has required performance is the most important figure and that is the key of project succeed. In order to perform that, systems engineering has come to the fore as a solution. In each step of system engineering process, particularly, requirement analysis and derivation, logical solution, architecture design step are known to affect many of the function and efficiency. Of these, this paper focus on architecture design. We introduce methodology for physical architecture design by applying DSM(Design Structure Matrix) methodology which is based on result of logical solution from MBSE methodology.
에너지 효율성 초점이 맞추어진 대부분의 클러스터링 기법에서 클러스터 내에서 단일의 클러스터를 채용함으로써 클러스터 헤드의 에너지 소비가 급격히 증가 할 수 있다. 최근, 이러한 단점을 개선하기 위해 데이터 병합 기능 헤드와 데이터 전송 기능 헤드로 구분하는 2-계층 클러스터 기법은 클러스터 내에서 클러스터 헤드의 에너지 소비를 분산시켰다. 그러나 이러한 구조는 한 클러스터 내에 존재하는 두 개 헤드 사이에 독립적인 영역구분이 없는 단지 논리적인 영역이므로 많은 메시지 충돌과 전송 지연이 발생한다. 이러한 문제점을 해결하기 위해, 본 논문에서는 노드의 위치정보와 클러스터 반경을 이용해 한 클러스터에 속한 두 계층을 독립적으로 명확히 분할할 수 있는 분리된 2-계층 라우팅기법을 제시한다. 제안하는 스킴에서는 각 계층에 속하는 멤버노드 수에 대한 균등분포를 통해 부하의 분산을 보장한다. 제안한 기법은 기존의 DLS 기법보다 메시지 충돌문제를 50% 개선하였고, 네트워크의 수명도 DLS와 LEACH 등에 비해 약 10% 개선하였다.
In general, a number of severe accident scenarios derived from Level 2 probabilistic safety assessment (PSA) are typically grouped into several categories to efficiently evaluate their potential impacts on the public with the assumption that scenarios within the same group have similar source term characteristics. To date, however, grouping by similar source terms has been completely reliant on qualitative methods such as logical trees or expert judgements. Recently, an exhaustive simulation approach has been developed to provide quantitative information on the source terms of a large number of severe accident scenarios. With this motivation, this paper proposes a machine learning-based categorization method based on exhaustive simulation for grouping scenarios with similar accident consequences. The proposed method employs clustering with an autoencoder for grouping unlabeled scenarios after dimensionality reductions and feature extractions from the source term data. To validate the suggested method, source term data for 658 severe accident scenarios were used. Results confirmed that the proposed method successfully characterized the severe accident scenarios with similar behavior more precisely than the conventional grouping method.
본 연구에서 우리는 모듈의 의존관계와 저자 엔트로피(Author Entropy) 정보를 이용하여 소프트웨어 모듈-뷰를 복원하는 새로운 소프트웨어 클러스터링 기법을 제안한다. 해당 기법은 우선 구조적 및 논리적 의존관계 정보를 기준으로 소프트웨어 모듈을 클러스터링한 후, 모듈 별 저자 엔트로피를 이용하여 일부 선택된 모듈을 클러스터 결과로부터 이전한다. 제안된 기법의 평가를 위해 참(ground-truth) 모듈-뷰가 알려진 오픈소스 프로젝트들에 적용하여 MoJoFM 값을 구하였다. 이와 함께 기존에 연구된 모듈-뷰 복원 기법들의 MoJoFM값과 비교하여, 제안된 기법이 소프트웨어 모듈-뷰 복원에 보다 효과적임을 보였다.
ATM Clustering System과 같이 SAN(System Area Network) 환경에서 동작하는 시스템은 낮은 지연시간과 넓은 대역폭의 네트워크가 필수적이나 기존의 에러 복구 프로토콜들은 이러한 요구를 충족시키기에는 큰 오버헤드를 가지고 있다. 제안된 새로운 에러 복구 프로토콜은 ATM Clustering System 환경에서 최적의 성능을 나타내는 light-weight 프로토콜로 에러가 없는 상황과 에러 복구가 진행중인 상황에 따라 acknowledgement 주기를 적응적으로 변화시키는 adaptive acknowledgement scheme를 제안하여 적용하였다. 제안된 프로토콜은 상용 툴인 SDT를 이용한 논리 검증 받았고, DEVSim++ 환경에서의 성능 분석을 통해 프로토콜이 최상의 성능을 보이기 위한 파라메터 값을 찾았고, 이 값을 적용하였을 때의 성능을 기존의 프로토콜과 비교하여 제안된 프로토콜이 더 우수함을 확인하였다.Abstract While a system working with SAN, such as ATM Clustering System, requires a network with low latency and wide bandwidth, the previous error recovery protocols have a serious network overhead to satisfy this requirement. The suggested error recovery protocol is a light-weight protocol which can shows its best performance at ATM Clustering System and uses a newly suggested adaptive acknowledgement scheme. In the adaptive acknowledgement scheme, the period of acknowledgement is dynamically changed depending on the state of the network. We proved the logical correctness of our protocol with SDT and did performance analysis with DEVSim++. From the analysis, we found the optimal parameter values for best performance and showed that our protocol works better than the previous error recovery protocols.
이 논문에서는 침입 탐지 시스템의 탐지 효율을 높이기 위해 데이터 마이닝의 클러스터링 기법을 이용하여 경보 데이터를 그룹화하고 그 결과를 이용하여 경보 데이터의 상관 관계를 분석하는 방법을 제안하였다. 즉 클러스터링 기법을 이용하여 경보데이터를 사용자가 원하는 개수의 그룹으로 분류하고, 생성된 경보 데이터 클러스터 모델을 이용하여 새로운 경보 데이터을 분류할 수 있도록 하였다. 또한, 결과 클러스터의 생성 원인이 되는 이전의 경보의 분포 데이터를 저장 관리하여 클러스터 간의 시퀀스를 생성하였고, 생성된 각각의 클러스터 시퀀스를 통합하여 클러스터들의 시퀀스를 추출하여 발생한 경보 이후의 향후 발생 가능한 경보 타입을 예측하기 위한방법을 제공하였다. 이는 과거에 탐지된 공격의 형태 뿐만 아니라 새로운 혹은 변형된 경보의 분류나 분석에도 이용 가능하다. 또한 생성된 클러스터간의 생성 원인의 분석에 의한 클러스터 간의 순차적인 관계의 추출을 통해 사용자가 공격의 순차적 구조나 탐지된 각 공격 이면에 감추어진 전략을 이해하는데 도움을 주며 현재의 경보 이후에 발생 가능한 경보들을 얘측할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.