• Title/Summary/Keyword: logic process

Search Result 1,303, Processing Time 0.028 seconds

The Role of Intuition and Logic in Creative Problem Solving Process (창의적인 문제해결과정에서의 직관과 논리의 역할)

  • 이대현
    • The Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.159-164
    • /
    • 1999
  • The purpose of this paper is to find role of in and logic in creative problem solving process. Intuition and logic have played an important role in creative problem solving process. Nevertheless, Intuition has been treated less importantly than logic. Therefore, I intend to review the role of intuition, and then the relationship of intuition and logic, and the role of intuition and logic in creative problem solving process. Although intuition gives an important clue in problem solving process, it may sometimes cause an error. This fact gives an idea that intuition and logic have to be harmoniously cultivated. In fact, Intuition and logic have been playing a complementary role in creative problem solving process. A creative learner is regarded as a mathematician of his age. It must be through intuition and logic that he/she solves the problem creatively, just as a mathematician invents the new mathematical fact through unconscious and conscious process. In this respective, teachers also should make every effort to cultivate intuition and logic themselves.

  • PDF

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

Printed Active-Matrix Displays

  • Burns, S.E.;Kuhn, C.;Jacobs, K.;Ramsdale, C.;Arias, A.C.;Watts, J.;Etchells, M.;Chalmers, K.;Devine, P.;Murton, N.;Norval, S.;King, J.;Mills, J.;Sirringhaus, H.;Friend, R.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.227-229
    • /
    • 2003
  • We present a process for printing active matrix displays. In this process, transistors are fabricated using soluble semi-conducting and conducting materials. Accurate definition of the transistor channel and other circuit components is achieved by direct inkjet printing combined with surface energy patterning. We present results on our 4,800 pixel, 50 dpi, active matrix displays.

  • PDF

Design of a High Speed and Low Power CMOS Demultiplexer Using Redundant Multi-Valued Logic (Redundant Multi-Valued Logic을 이용한 고속 및 저전력 CMOS Demultiplexer 설계)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper proposes a high speed interface using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit that serial binary data are received and converted into parallel redundant multi-valued data, and decoding circuit that convert redundant multi-valued data to parallel binary data. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, a 1:4 demultiplexer (DEMUX, serial-parallel converter) IC was designed using a 0.35${\mu}m$ standard CMOS Process. Proposed demultiplexer is achieved an operating speed of 3Gb/s with a supply voltage of 3.3V and with power consumption of 48mW. Designed circuit is limited by maximum operating frequency of process. Therefore, this circuit is to achieve CMOS communication ICs with an operating speed greater than 3Gb/s in submicron process of high of operating frequency.

  • PDF

Fuzzy Logic-Based Moldability-Conforming System in Injection Molding

  • Kang, Seong-Nam;Huh, Yong-Jeong;Huh, Yong-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be dune by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.

Design and Characteristics of Modern Power MOSFETs for Integrated Circuits

  • Bang, Yeon-Seop
    • The Magazine of the IEIE
    • /
    • v.37 no.8
    • /
    • pp.50-59
    • /
    • 2010
  • $0.18-{\mu}m$ high voltage technology 13.5V high voltage well-based symmetric EDMOS isolated by MTI was designed and fabricated. Using calibrated process and device model parameters, the characteristics of the symmetric and asymmetric EDMOS have been simulated. The asymmetric EDMOS has higher performance, better $R_{sp}$ / BVDSS figure-of-merit, short-channel immunity and smaller pitch size than the symmetric EDMOS. The asymmetric EDMOST is a good candidate for low-power and smaller source driver chips. The low voltage logic well-based EDMOS process has advantages over high voltage well-based EDMOS in process cost by eliminating the process steps of high-voltage well/drift implant, high-temperature long-time thermal steps, etc. The specific on-resistance of our well-designed logic well-based EDMOSTs is compatible with the smallest one published. TCAD simulation and measurement results show that the improved logic well-based nEDMOS has better electrical characteristics than those of the conventional one. The improved EDMOS proposed in this paper is an excellent candidate to be integrated with low voltage logic devices for high-performance low-power low-cost chips.

  • PDF

A Development of Fuzzy-Logic Application for Improving Safety Diagnosis Rating Method of Agricultural Fill Dam (농업용 필댐의 안전진단등급 평가법 개선을 위한 퍼지논리 적용법 개발)

  • Yun, Sung-wook;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.33-43
    • /
    • 2023
  • In this study, it was developed and verified an application method of fuzzy-logic theory to the rating process of agricultural fill dam safety. A fuzzy-logic is very famous logical system when some decision making is made on the status of a lack of information. Three proxies were selected and configured membership functions (MFs) and these MFs were activated in the process of fuzzification procedures. Fuzzified vlaues were passed through the rule-based inference system, then fire strength could classified among cases of the rule-based inference system. To obtain final results, Mandani-type was adapted in the defuzzification process. As the results, it was shown the developed system can give a correct results that was compared with Matlab - fuzzy inference function. More ever it could perform the detailed analysis and improvement on the infrastructure safety rating process using classical diagnosis method.

The syntax of Linear logic (선형논리의 통사론)

  • Cheong, Kye-Seop
    • Journal for History of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.29-39
    • /
    • 2012
  • As a product of modern proof theory, linear logic is a new form of logic developed for the purpose of enhancing programming language by Professor Jean-Yves Girard of Marseille University (France) in 1987 by supplementing intuitionist logic in a sophisticated manner. Thus, linear logic' s connectives can be explained using information processing terms such as sequentiality and parallel computation. For instance, A${\otimes}$B shows two processes, A and B, carried out one after another. A&B is linked to an internal indeterminate, allowing an observer to select either A or B. A${\oplus}$B is an external indeterminate, and as such, an observer knows that either A or B holds true, but does not know which process will be true. A ${\wp}$ B signifies parallel computation of process A and process B; linear negative exhibits synchronization, that is, in order for the process A to be carried out, both A and $A^{\bot}$ have to be accomplished simultaneously. Since the field of linear logic is not very active in Korea at present, this paper deals only with syntax aspect of linear logic in order to arouse interest in the subject, leaving semantics and proof nets for future studies.

Development of an automatic steam generator level control logic at low power (저 출력시 증기발생기 수위의 자동제어논리 개발)

  • Han, Jae-Bok;Jung, Si-Chae;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.601-604
    • /
    • 1996
  • It is well known that steam generator water level control at low power operation has many difficulties in a PWR (pressurized water reactor) nuclear power plant. The reverse process responses known as shrink and swell effects make it difficult to control the steam generator water level at low power. A new automatic control logic to remove the reverse process responses is proposed in this paper. It is implemented in PLC (programmable logic controller) and evaluated by using test equipment in Korea Atomic Energy Research Institute. The simulation test shows that the performance requirements is met at low power (below 15%). The water level control by new control logic is stabilized within 1% fluctuation from setpoint, while the water level by YGN 3 and 4 control logic is unstable with the periodic fluctuation of 25% magnitude at 5% power.

  • PDF

An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method

  • Kim Seong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.183-188
    • /
    • 2005
  • Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields, the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished. Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].