Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.
본 논문에서는 기존 LDP 코드의 문제점을 보완하고 화소의 색상 정보와 밝기 정보, 에지 방향 정보, 그리고 에지 반응 크기 정보를 포함할 수 있는 새로운 LDP를 제안한다. 제안된 방법은 얼굴색 정보를 포함하기 위해 기존 LDP 코드를 줄이는 방법을 제안하고 그 결과를 분석하였다. 새로운 LDP 코드는 기존 LDP 코드와 달리 6비트로 표현함으로써 나머지 2비트에 필요로 하는 정보를 포함할 수 있도록 하였으며, 기존 LDP 코드에 비해서 잡음과 환경 변화에 효과적으로 적응할 수 있도록 하였다. 실험 결과 제안된 LDP 코드는 기존 방법들에 비해 높은 인식률 향상과 얼굴 표정인식 결과에서도 효과적임을 보여주었다.
This paper proposes an efficient partial matching system and representation by using a region-based method for 2D image, and we applied to an extraction of the ROI(Region of Interest) according to its matching score. The matching templates consist of the global pattern and the local one. The global pattern can make it by using region-based relation between center region and its rest regions in an object. And, the local pattern can be obtained appling to the same method as global, except relation between objects. As the templates can be normalized, we use this templates for extraction of ROI with invariant to size and position. And, our system operates only one try to match, due to normalizing of region size. To use our system for searching and examining if it's the ROI by evaluating the matching function, at first, we are searching to find candidate regions with the global template. Then, we try to find the ROI among the candidates, and it works this time by using the local template. We experimented to the binary and the color image respectively, they showed that the proposed system can be used efficiently for representing of the template and the useful applications, such as partially retrievals of 2D image.
For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권11호
/
pp.5605-5623
/
2016
We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual's recognition capability, and outperforms the existing methods.
본 논문에서는 두 점의 집합들 사이의 기하학적 유사도에 근거한 Hausdorff 거리와 국지적 미세 텍스처의 분포에 근거한 Local Binary Pattern 거리가 융합된 새로운 측도를 도입함으로써 얼굴검출의 정확도를 높이는 방법을 제안하고 있다. 트레이닝 데이터를 이용해서 두 가지의 상이한 측도들을 정규화할 수 있는 매개변수와 최적화된 융합 비율을 찾는 방법을 보였다. 흔히 사용되는 얼굴 데이터베이스에 적용함으로써 제시된 방법이 두 가지 방법 각각을 이용한 방법보다 효과적이고 얼굴의 자세, 조명, 배경의 변화에 강인함을 보였다. 실험에서 사용된 데이터베이스의 경우 실제 얼굴의 위치와 검출된 얼굴의 위치 간의 평균거리오차가 LBP 방식의 47.9%, Hausdorff 방식의 22.8% 로 감소됨을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권4호
/
pp.1807-1823
/
2016
Local Binary Pattern (LBP) and its variants have powerful discriminative capabilities but most of them just consider each LBP code independently. In this paper, we propose sub oriented histograms of LBP for smoke detection and image classification. We first extract LBP codes from an image, compute the gradient of LBP codes, and then calculate sub oriented histograms to capture spatial relations of LBP codes. Since an LBP code is just a label without any numerical meaning, we use Hamming distance to estimate the gradient of LBP codes instead of Euclidean distance. We propose to use two coordinates systems to compute two orientations, which are quantized into discrete bins. For each pair of the two discrete orientations, we generate a sub LBP code map from the original LBP code map, and compute sub oriented histograms for all sub LBP code maps. Finally, all the sub oriented histograms are concatenated together to form a robust feature vector, which is input into SVM for training and classifying. Experiments show that our approach not only has better performance than existing methods in smoke detection, but also has good performance in texture classification.
Smoke and fire have different shapes and colours. This article suggests a fully connected system which is used two features using Adaboost algorithm for constructing a strong classifier as linear combination. We calculate the local histogram feature by gradient and bin, local binary pattern value, and projection vectors for each cell. According to the histogram magnitude, this paper applied adapted weighting value to improve the recognition rate. To preserve the local region and shape feature which has edge intensity, this paper processed the normalization sequence. For the extracted features, this paper Adaboost algorithm which makes strong classification to classify the objects. Our smoke detection system based on the proposed approach leads to higher detection accuracy than other system.
The detection of ship wakes image can demonstrate substantial information regarding on a ship, such as its tonnage, type, direction, and speed of movement. Consequently, the wake target recognition is a favorable way for ship identification. This paper proposes a Local Binary Pattern (LBP) approach to extract image features (wakes) for training an Improved Back Propagation Artificial Neural Network (IBPANN) to identify ship speed. This method is applied to sort and recognize the ship wakes of five different speeds images, the result shows that the detection accuracy is satisfied as expected, the average correctness rates of wakes target recognition at the five speeds may be achieved over 80%. Specifically, the lower ship's speed, the better accurate rate, sometimes it's accuracy could be close to 100%. In addition, one significant feature of this method is that it can receive a higher recognition rate than the nearest neighbor classification method.
This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.