• Title/Summary/Keyword: local bending

Search Result 315, Processing Time 0.024 seconds

Effect of Induction Heat Bending Process on the Corrosion Properties of 316 Stainless Steel Pipes for Nuclear Power Plant (원자력발전소용 316 스테인리스강 배관의 부식특성에 미치는 유도가열벤딩공정의 영향)

  • Shin, Mincheol;Kim, Young Sik;Kim, Kyungsu;Chang, Hyunyoung;Park, Heungbae;Sung, Giho
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.87-94
    • /
    • 2014
  • Recently, the application of bending products has been increased since the industries such as automobile, aerospace, ships, and plants greatly need the usage of pipes. For facility fabrication, bending process is one of key technologies for pipings. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. Because of local heating and compressive strain, detrimental phases may be precipitated and microstructural change can be induced. This work focused on the effect of induction heat bending process on the properties of ASME SA312 TP316 stainless steel. Evaluation was done on the base metal and the bended areas before and after heat treatment. Microstructure analysis, intergranular corrosion test including Huey test, double loop electropotentiokinetic reactivation test, oxalic acid etch test, and anodic polarization test were performed. On the base of microstructural analysis, grain boundaries in bended extrados area were zagged by bending process, but there were no precipitates in grain and grain boundary and the intergranular corrosion rate was similar to that of base metal. However, pitting potentials of bended area were lower than that of the base metal and zagged boundaries was one of the pitting initiation sites. By re-annealing treatment, grain boundary was recovered and pitting potential was similar to that of the base metal.

Bending Strain Dependence of the Transport Property in Jointed BSCCO Tapes

  • Dedicatoria, Marlon J.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.5-8
    • /
    • 2010
  • In this study, the effect of bending strain on the transport property and critical current of lap and butt-jointed (non-laminated) BSCCO tapes has been investigated. The samples were joined using a mechanically controlled jointing procedure. To achieve a uniform thickness at the joint a single point loading contact has been devised. GFRP mandrels with different bending radii which support the sample during bending have been used. $I_c$ have been measured at 77 K and self field. In the case of easy bending test for jointed BSCCO tapes, sudden degradation of $I_c$ is caused by the local strain concentration due to non uniform deformation at the edge parts of the joint. In the case of hard bending test of jointed BSCCO tapes transverse macroscopic crack at specific subsection caused a large $I_c$ degradation. The transport property of jointed BSCCO tapes in each bending mode was discussed with the damage morphology occurred.

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

A Structural Analysis of Sandwich Plate with Unsymmetrical FRP Thick Faces (두껍고 비대칭인 FRP면재를 갖는 Sandwich 평판의 구조해석)

  • Ik-Tai Kim;Ki-Sung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.132-140
    • /
    • 1995
  • The structural behavior of sandwich plates with unsymmetricaly thick faces are analysed using Raleigh-Ritz Energy method by comparing the bending stresses, shear stresses, local bending stresses, membrane stresses of skin and core materials including local bending effect. As for sandwich materials, the combination of two types of face materials and three types of core materials are used in the analysis.

  • PDF

Limit Loads for Piping Branch Junctions with Local Wall-thinning under Internal Pressure and In-plane Bending (감육이 존재하고 내압과 굽힘하중의 복합하중을 받는 T 분기관의 한계하중)

  • Han, Jae-Jun;Lee, Kuk-Hee;Kim, Yun-Jae;Lee, Sung-Ho;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.299-304
    • /
    • 2008
  • This paper presents plastic limit loads of piping branch junctions with local wall thinning under combined pressure and in-plane bending, based on systematic three-dimensional finite element limit analyses using elastic-perfectly plastic materials. An ideal branch junction without weld or reinforcement around the intersection is considered with two locations of wall thinning; one in the run pipe, and the other in the branch pipe. Based on FE results, effects of thinning geometries on plastic limit moments are quantified and simple approximations of plastic limit loads are proposed.

  • PDF

Effect of Local Wall Thinning on Pipe Elastic Bending Compliance (국부 감육이 배관 굽힘 컴플라이언스에 미치는 영향 )

  • Ki-Wan Seo;Jae-Min Gim;Yun-Jae Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2021
  • The thickness of pipe can be locally reduced during operation due to wall thinning. Due to its significance on structural integrity, many non-destructive detecting techniques and assessment methods are available. In this study, the elastic bending compliance of local wall-thinned pipe is presented in terms of the wall thinning geometry: wall thinning depth, circumferential angle and longitudinal length. Elastic finite element (FE) analysis further shows that the presented equation can be used for any wall thinning shape. The proposed solution differs from FE results by less than 6% for all cases analyzed. The bending compliance increases linearly with increasing longitudinal thinning length and non-linearly with increasing thinning angle and depth.

Effect of local wall thinning on ratcheting behavior of pressurized 90° elbow pipe under reversed bending using finite element analysis

  • Chen, Xiaohui;Chen, Xu
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.931-950
    • /
    • 2016
  • Ratcheting deformation of pressurized Z2CND18.12N stainless steel $90^{\circ}$ elbow pipe with local wall thinning subjected to constant internal pressure and reversed bending was studied using finite element analysis. Chen-Jiao-Kim (CJK) kinematic hardening model, which was used to simulate ratcheting behavior of pressurized $90^{\circ}$ elbow pipe with local wall thinning at extrados, flanks and intrados, was implemented into finite element software ANSYS. The local wall thinning was located at extrados, flanks and intrados of $90^{\circ}$ elbow pipe, whose geometry was rectangular cross-section. The effect of depth, axial length and circumferential angle of local wall thinning at extrados, flanks and intrados on the ratcheting behaviors of $90^{\circ}$ elbow pipe were studied in this paper. Three-dimensional elastic-plastic analysis with Chen-Jiao-Kim (CJK) kinematic hardening model was carried out to evaluate structural ratcheting behaviors. The results indicated that ratcheting strain was generated mainly along the hoop direction, while axial ratcheting strain was relatively small.

Evaluation of Local Allowable Wall Thickness of Thinned Pipe Subjected to Internal Pressure and Bending Moment (내압과 굽힘하중하에서 감육배관의 국부허용두께 평가)

  • Kim, Jin-Won;Park, Chi-Yong;Kim, Beom-Nyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2001
  • This study proposed an analytical method to evaluate a local allowable wall thickness (LAWT) for locally thinned pipe subjected to internal pressure and bending moment. In this method, the stresses in the thinned region were calculated by finite element analysis and plastic collapse was applied as a failure criterion of thinned pipe. Using this method, LAWT for a simplified thinned pipe was evaluated with variation in axial extent of thinned area, and it was compared with allowable wall thickness provided by previous pipe wall thickness criteria. The results showed that the LAWT was lower, about 50%, than that calculated by construction code or ASME Code N-597, and it was higher, about 2 times, than that estimated by evaluation model based on pipe experiments. In addition, LAWT was decreased with increasing axial extent of thinned area and saturated with further increase in axial extent. And, the variation in LAWT with axial extent of thinned area depended on type of load, especially a magnitude of bending moment, considering in the evaluation.

Effect of wall Thinning on the Failure of Pipes Subjected to Bending Load (굽힘하중을 받는 배관의 파손에 미치는 감육의 영향)

  • AHN SEOK-HWAN;LEE SOO-SIG;NAM KI-WOO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.242-246
    • /
    • 2004
  • Effects of circumferentially local wall thinning on the fracture behavior of pipes were investigated by monotonic four-point bending. Local wall thinning was machined on the pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area included an eroded ratio of d/t= 0.2, 0.5, 0.6, and 0.8, and an eroded length of I = 10 mm, 25 mm, and 120 mm. Fracture type could be classified into ovalization, local buckling, and crack initiation depending on the eroded length and eroded ratio. Three-dimensional elasto-plastic analyses were also carried out using the finite element method, which is able to accurately simulate fracture behaviors excepting failure due to cracking. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the eroded area.

  • PDF

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF