• 제목/요약/키워드: loading performance

Search Result 2,637, Processing Time 0.028 seconds

Seismic performance evaluation of a steel slit damper for retrofit of structures on soft soil

  • Mahammad Seddiq Eskandari Nasab;Jinkoo Kim;Tae-Sang Ahn
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • This paper presents an experimental and analytical study on a steel slit damper designed as an energy dissipative device for earthquake protection of structures considering soil-structure interaction. The steel slit damper is made of a steel plate with a number of slits cut out of it. The slit damper has an advantage as a seismic energy dissipation device in that the stiffness and the yield force of the damper can be easily controlled by changing the number and size of the vertical strips. Cyclic loading tests of the slit damper are carried out to verify its energy dissipation capability, and an analytical model is developed validated based on the test results. The seismic performance of a case study building is then assessed using nonlinear dynamic analysis with and without soil-structure interaction. The soil-structure system turns out to show larger seismic responses and thus seismic retrofit is required to satisfy a predefined performance limit state. The developed slit dampers are employed as a seismic energy dissipation device for retrofitting the case study structure taking into account the soil-structure interaction. The seismic performance evaluation of the model structure shows that the device works stably and dissipates significant amount of seismic energy during earthquake excitations, and is effective in lowering the seismic response of structures standing on soft soil.

Laboratory Investigation into Factors Affecting Performance of Anaerobic Contact Process for Pear Processing Wastewater

  • Hur Joon Moo;Son Bu Soon;Jang Bong Ki;Park Jong An;Lee Jong Whoa;Kim Joon Hyun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.99-108
    • /
    • 1998
  • Results obtained from this research showed that the anaerobic contact process was applicable to pear waste with COD removal efficiencies of up to $95\%$ depending on conditions, provided ammonium and phosphate salts were added as well as other nutrients, present in the commercial fertilizer, Milorganite or in yeast extract. These latter materials were required in minimum concentrations of 5 and 1.5 g/L, respectively, in the feed independent of HRT and volatile solids loading rate, with part of the effect due to the mineral fraction. Digestion was satisfactory over the whole range of volatile solids loading rates and liquid retention time of 30 to 0.5 days tested, although treatment efficiency dropped off noticeably between 1 and 0.5 day liquid retention time because of poorer flocculation and separation of anaerobic bacteria. Settling of anaerobic bacteria including methane producing bacteria was related to settling of mixed liquor suspended solids only at 1 to 5 days liquid retention times, at other liquid retention times anaerobic microorganism settled markedly less efficiently than mixed liquor suspended solids. Further studies are being made to provide information of practical and basic interest. Data on the composition of the active fraction of yeast extract might solve many practical nutrient problems encountered with the anaerobic contact process and improve its economics. Further improvement in the flocculation and settling of anaerobic bacteria as well as other bacteria would improve overall performance and allow the use of shorter liquid retention times with dilute waste. Knowledge about the numbers of methane formers present would allow a degree of understanding and control of the process not presently attainable.

  • PDF

Cyclic Test of Shear Wall Damping Systems (전단벽 제진시스템의 반복가력실험)

  • Ahn, Tae Sang;Kim, Young Ju;Kim, Hyung Geun;Jang, Dong Woon;Choi, Kyoung Kyu;Kim, Jong Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The objective of conventional seismic design is to ensure an acceptable safety level while avoiding catastrophic failures of structures and loss of life. Over the last many years, a large amount of research has been devoted into developing effective earthquake resistant systems in order to raise the seismic performance level of structures. The purpose of this study is to propose a new damping system, which realize not only increasing seismic performance but also easy repairing after an earthquake. The proposed damping system is slit in the bottom of wall with damping devices installed in the slit horizontally aiming to dissipate energy during earthquakes. Cyclic loading tests were conducted to investigate hysteretic behavior and energy dissipation capacity. Test results show that the proposed systems exhibit a stable hysteretic response and the energy dissipation in this system is concentrated on the damping devices.

Performance Comparison of Continuous Reactors for Bioethanol Production Based on Glycerol (글리세롤 기반의 바이오에탄올 생산을 위한 연속생산반응기의 성능 비교)

  • Lee, Sang-Jun;Song, Yoon-Seok;Kim, Sung-Bong;Kang, Sung-Woo;Han, Sung-Ok;Park, Chul-Hwan;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.328-332
    • /
    • 2011
  • Ethanol production using glycerol as a carbon source was performed by Enterobacter aerogenes immobilized on calcium alginate beads. To improve the ethanol production, the optimal conditions such as loading amount of immobilized cells and glycerol concentration were investigated. The optimal loading amount of immobilized cells and glycerol concentration were 10 mL of calcium alginate bead and 10 g/L, respectively. Consequently, glycerol consumption rate, ethanol concentration and yield were 0.32 g/$L{\cdot}h$, 3.38 g/L and 0.43 g/g on the batch production, respectively. Continuous production of ethanol was successfully achieved using two types of immobilized cell reactors (continuous stirred tank reactor and packed bed reactor) from 10 g/L of glycerol. In the continuous stirred tank reactor, glycerol consumption, ethanol concentration, specific productivity and yield were 9.8 g, 4.67 g/L, 1.17 g/$L{\cdot}h$, 0.48 g/g, respectively. The concentration of produced ethanol was 38-44% higher comparison to batch fermentation, and continuous stirred tank reactor showed better performance than packed bed reactor.

Seismic Performance Assessment of RC Pier Walls under Cyclic Out-of-plane Loading (면외방향으로 반복하중을 받는 철근콘크리트 벽식 교각의 내진성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.73-83
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete pier walls under cyclic out-of-plane loading and to develop improved seismic design criteria. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize the behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The method is verified a useful tool to assess the seismic performance of reinforced concrete pier walls subjected to cyclic out-of-plane load through comparing with reliable experimental results.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Evaluation of Seismic Performance of Beam-Column Connections Using Minimally Spaced Headed Reinforcements (근접 배치된 확대머리 철근의 보-기둥 접합부 내진 성능 평가)

  • Cho, Ah Sir;Shin, Hyeong-Yeop;Jeong, Seung Yong;Kang, Thomas H.K.;Kim, Woosuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • To resolve the conservative requirements for clear headed-bar spacing in KBC 2016 and ACI 318-08, two 2/3-scale exterior beam-column connections were tested under cyclic seismic loading. The seismic tests primarily explored the effect on their seismic performance of using (a) small clear spacings and (b) multiple layers of headed reinforcements in the beam. Also, the previous test data were thoroughly analyzed. It was concluded that the clear bar spacing of 2db or the use of two bar layers might be permitted for headed reinforcements embedded in exterior beam-column connections.

A Study on Punching Shear of Column-Foundation Joint Connection for Reinforced Steel Base Plate (Base Plate로 보강된 기둥-기초 접합부의 뚫림전단강도 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, the RC column-based joint connection part carry out loading test by reinforced hollow or extended Base Plate in order to confirm that RC joint punching shear reinforcement effect of applying the Base Plate. Base Plate thickness, extension length, size, and type as the variable, Base Plate suitable for the stress distribution and shape and dimensions confirmed through experiment and then reinforcing effect was analyzed. Experimentally, vertical load transmitted to the Base Plate from column to foundation is effective to stress distribution and then, type of hollow reinforcement more efficient than a closed. Through experiment, improve performance and ductility due to reinforcement and relative to the thickness of the existing foundation reduced even showed better performance than the existing. The behavior of the reinforced specimens be able to induce from brittle to ductile. Experiment on loading to destroy performed the pattern of cracks, destruction aspect before and after reinforcement.

Continuous electricity generation in microbial fuel cells with non-precious metal catalysts (비귀금속촉매 미생물연료전지의 연속운전을 통한 전기 생산)

  • Moon, Chungman;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In this study, continuous microbial fuel cells (MFCs) were operated using non-precious metal catalysts such as iron(II) phthalocyanine (FePc) and cobalt tetramethoxyphenylporphyrin (CoTMPP)) as alternative cathode catalysts for platinum. To evaluate MFCs performance, operational conditions of organic loading rate (OLR) (0.5~3 g COD/L/d) and hydraulic retention rate (HRT) (0.25~1 day) were changed. Power density of MFCs were determined by cathode electrode performance. The maximum power density was $3.3W/m^3$ with platinum at OLR 3 g COD/L/d. Given each HRTs at 1 g COD/L/d, FePc showed to be a better alternative for platinum than CoTMPP because the power density of MFC with FePc was similar to that of MFC with platinum. CoTMPP catalyst, however, showed the lowest power density due to increase of internal resistance during continuous operation.

Static Behavior Analysis of Spillway Pier for Dam Safety Evaluation (댐 안전성 평가를 위한 여수로 피어부의 정적 거동 분석)

  • Jang, Bong-Seok;Lim, Jeong-Yeul;Lee, Myung-Kue;Lee, Hyung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • Seismic performance evaluation for dam safety evaluation has been continually conducted. However the behavior analysis for the spillway pier which is known as the weak point of dam is seldom reported. Therefore, this study performed the static loading tests for a prototype structures as elementary tests for the final seismic performance evaluation of dam safety. The prototype of pier structure has 1/20 scale and it adopts to strength model. And cracking loads and ultimate loads of real structures are calculated through numerical analysis using commercial FEM program (ABAQUS). The results of this study show some difference between the results of prototype tests and the results of numerical analysis. Also, the ultimate and cracking loads can be estimated through the prototype loading test and numerical analysis.