• Title/Summary/Keyword: loading eccentricity

Search Result 104, Processing Time 0.018 seconds

Numerical Study on the Fire Damaged Reinforced Concrete Building Structures Considering Influencing Fire Case and Parameters of Columns (화재피해를 받은 철근콘크리트 건축물의 기둥의 영향인자를 고려한 해석적 연구)

  • Suh, Yeonwoo;Son, Hee Ju
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.101-112
    • /
    • 2022
  • Expanding urbanization practices result in high numbers of buildings being developed in city centers. This high building concentration leads to an increased fire risk, resulting in higher casualty rates and increased economic damages compared to fires in the past. The purpose of this study was to analyze the structural behavior of fire-damaged reinforced concrete buildings using analytical methods and to suggest methods of improving fire resistance in the event of a fire. Damage levels were measured using commercial software to apply the finite element method, ABAQUS, and MIDAS GEN to the dataset. Load-deflection curves were calculated using the effective area and moment of inertia of the fire-damaged columns provided by ABAQUS. The results of this analysis indicate that fire-damaged beams with experience greater deflection from indoor fires than they will from outdoor fires. Fires that occurred on the middle floors were more dangerous than those occurring on higher floors, and eccentrically loaded columns experienced more damage than axially loaded columns. The results indicate that these methods accurately predict structural behaviors of fire damaged concrete columns by considering fire exposure area and eccentric loading.

Experimental study on the horizontal bearing characteristics of long-short-pile composite foundation

  • Chen-yu Lv;Yuan-cheng Guo;Yong-hui Li;An-di Hu-yan;Wen-min Yao
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.341-352
    • /
    • 2023
  • Long-short pile composite foundations bear both vertical and horizontal loads in many engineering applications. This study used indoor model tests to determine the horizontal bearing mechanism of a composite foundation with long and short piles under horizontal loads. A custom experimental device was developed to prevent excessive eccentricity of the vertical loading device caused by the horizontal displacement. ABAQUS software was used to analyze the influence of the load size and cushion thickness on the horizontal bearing mechanism. The results reveal that a large vertical load leads to soil densification and increases the horizontal bearing capacity of the composite foundation. The magnitude of the horizontal displacement of the pile and the horizontal load borne by the pile are related to the piles' positions. Due to different pile lengths, the long piles exhibit long pile effects and experience bending deformation, whereas the short piles rotate around a point (0.2 L from the pile bottom) as the horizontal load increases. Selecting a larger cushion thickness significantly improves the horizontal load sharing capacity of the soil and reduces the horizontal displacement of the pile top.

Station Keeping Maneuver Planning Using COMS Flight Dynamic Software

  • Kim, Hae-Yeon;Lee, Byoung-Sun;Hwang, Yoo-La;Shin, Dong-Suk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.16-21
    • /
    • 2007
  • Various perturbations by the sun, the moon and the earth itself cause a continuous change in nominal position of a geostationary satellite. In order to maintain the satellite within a required window, north-south station keeping for controlling inclination and right ascension of ascending node, and east-west station keeping for controlling eccentricity and longitude are required. In this paper, station keeping maneuver simulation for Communication, Ocean and Meteorological Satellite (COMS) was performed using COMS Flight Dynamics Software(FDS) and the results were analyzed. COMS performs weekly based east-west/north-south station keeping to maintain satellite within ${\pm}0.05^{\circ}$ at the nominal longitude of $128.2^{\circ}E$. In addition, COMS performs wheel off-loading maneuver twice a day to eliminate attitude error caused by one-solar wing in the south panel of the satellite. In this paper, station keeping maneuver considering wheel off-loading maneuver was performed and the results showed that COMS can be maintained well within ${\pm}0.05^{\circ}$ window using COMS FDS.

  • PDF

Eccentric Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.249-260
    • /
    • 2017
  • In order to investigate the structural performance of a novel prefabricated-SRC column using bolt-connected steel angles(PSRC column), eccentric axial loading tests were performed for six PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and eccentricity ratio of axial load. The test results showed that, due to high axial-stiffness of the angles located at the corners of the cross section, the compressive load-carrying capacity and deformation capacity of the PSRC specimens were greater than those of the SRC specimens in the large eccentricity ratio of axial load. Closely spaced lateral steel plates and Z-shaped lateral steel plates improved lateral confinement, which increased the load-carrying capacity of the PSRC specimens. The combined flexural and axial load-carrying capacity of the specimens by tests and nonlinear numerical analysis were greater than the predictions by current design codes. The numerical analysis agreed well with the test results including the initial stiffness, peak strength, and post-peak strength degradation.

Algebraic Analysis for Partitioning Root and Stem Lodging in Rice Plant

  • Chang, Jae-Ki;Yeo, Un-Sang;Lee, Jeom-Sig;Oh, Byong-Geun;Kim, Jeong-Il;Yang, Sae-Jun;Ku, Yeon-Chung;Kim, Ho-Yeong;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.539-543
    • /
    • 2006
  • Lodging is classified as root lodging caused by the loss of supporting force in the root, bending caused by the deformation of the stem and breaking where the stem breaks down as loads exceeding critical elasticity were applied. This research excluded breaking which is not in a state of equilibrium and tried to partition the level of lodging using an algebraic model in root lodging and stem lodging, or bending. When a vertical load was applied, the deformation of the stem of rice plant showed the form of a quadratic equation. The trace of the panicle neck in the process of lodging was an ellipse-shape. When loading was pure root lodging, the trace of the panicle neck became a circle of which culm length is the radius. When it was a pure stem lodging, the trace of the panicle neck is an ellipse of which major axis is culm length and minor axis is 0.64* culm length. When both stem lodging and root lodging occurred in a natural setting, the partitioning of lodging can be calculated by a formula using eccentricity of an ellipse, S=e*100/0.768(S is the ratio of stem lodging in the whole lodging, e is eccentricity of the ellipse). This method is expected to be useful in simple lodging partitioning. We could also calculate the partitioning of stem lodging and root lodging as units of angles as an accuracy method, by using a straight line calculated by differentiating a quadratic equation of stem deformation at the origin of the coordinates. These two methods for dividing root and stem lodging showed different values. However, each of them showed almost same values with different lodging degree in one plant.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

Structural Performance of Concrete-encased Steel Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능)

  • Kim, Chang-Soo;Park, Hong-Gun;Choi, In-Rak;Chung, Kyung-Soo;Kim, Jin-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.497-509
    • /
    • 2010
  • Five concrete-encased steel columns using high-strength steel($f_{ys}$=801MPa) and high-strength concrete($f_{ck}$=97.7MPa) were tested to investigate the eccentric axial load-displacement relationship. Test parameters included the type, yield strength, and spacing of lateral reinforcement, and also the eccentricity of axial load. To analyze the behavior of the column specimens, the nonlinear sectional analysis using strain-compatibility and confinement effect was performed. To examine the applicability of existing design codes for the composite sections using high-strength materials, the test results were also compared with the predictions by the nonlinear analysis and the design codes. The confinement effect of lateral reinforcement increased the ductility of concrete, and the moment capacity of the column specimens increased with the ductility of concrete. The prediction by the nonlinear analysis gave good agreement with the test results. On the other hand, the ACI 318 neglecting lateral confinement effect underestimated the strength of the column specimens, and the Eurocode 4 using complete plastic capacity of steel section overestimated.

Transverse Stress of Slabs due tp Longitudinal Prestressing in Prestressed Concrete Box Girders (프리스트레스트 콘크리트 박스 거더의 종방향 프리스트레싱에 의한 슬래브의 횡방향 응력)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.679-688
    • /
    • 2003
  • For box girders in which the longitudinal tendon is profiled in the inclined webs, longitudinal prestressing force will induce transverse effects as well as longitudinal ones. In this paper, the method to estimate transverse effects induced by longitudinal prestressing is proposed. The concept of transverse equivalent loading which is calculated through longitudinal prestressing analysis is developed. The transverse stress in slabs of box girders due to longitudinal prestressing are investigated. The comparison of numerical results of the proposed method and those of folded plate method represents that the method is reasonable. Numerical analyses are carried out depending on the parameters such as web inclination and ratio of girder length to tendon eccentricity. Analysis results show that when only prestressing are considered the magnitude of transverse stress in slabs of box girder is not so large. However, if the other stresses due to dead and live load et al. are superposed on these stresses, it may be that the longitudinal prestressing effects are significant.

Load-carrying Capacity of Thermal Prestressed Steel Beam with Eccentric Bracket (편심 브라켓 설치 온도프리스트레싱 강재보의 하중저항 성능)

  • Kim, Sang-Hyo;Jung, Chi-Young;Choi, Kyu-Tae;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • This study evaluates the load-carrying capacity of a thermal prestressed steel beam with an eccentric bracket. The steel beam that is proposed in this study has an eccentrically installed cover plate through application of the eccentric bracket. The eccentric bracket helps the steel beam achieve greater sectional stiffness and more efficiently induces prestress. A material non-linear characteristic applied finite element analysis was also conducted to check the validity of the experiments. The results of this study showed that the structural stiffness, yield load, and ultimate strength of the TPSM-applied steel beam with the eccentric bracket increased due to the eccentricity of the cover plate.

Establishing the Structural Criteria to install Scaffolding-Use Brackets (비계지지브라켓 유형별 구조기준 설정에 관한 실험적 연구)

  • Son, Ki-Sang;Kal, Won-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.87-96
    • /
    • 1995
  • It is only three(3) years since we applied brackets for scaffolding in the construction area. Unfortunately, there is no structural criteria on how to install those in the site so far, despite the fact that those brackets have been applied into the site by the firms already. It is shown that resistant capacity of each bracket type has been investigated, analyzed from this experimental study. Accident-concerning data on construction site analyzed by the Ministry of Labor, show temporary structure involves 18.6% of the total industrial accident, which the accidents from scafold-supporting brackets have rate of 42.5% of the ones occurred from the temporary structures. There are two main aspects to be observed : one is how much resistant capacity the brackets have themselves, the other is how exactly to install those without eccentricity. But practically, nobody does check of this bolt-installing conditions in the site and no check of tightening level of nut because there is no available tool to check torque amount for this kind of nut. We just have to rely on scaffolders experience of this tightening. This experiment involves just this variable of tightness at site. Eventually this insufficient tightness causes to collapse those scaffolding structures. The bracket might have less the one than its original capacity due to this insufficient tightness. Three(3) times of PIVOT tests show that fractured condition of two(2) row brackets has occurred mostly at lower bolt due to shear force. Therefore, tightness of bracket-installing bolt, tensile strength of the bolt, shear strength of the bolt, loading condition with equal two point or inequal two point loads, are mainly investigated as variables in this study.

  • PDF