Structural Performance of Concrete-encased Steel Columns using 800MPa Steel and 100MPa Concrete

800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능

  • 김창수 (서울대학교 건축학과) ;
  • 박홍근 (서울대학교 건축학과) ;
  • 최인락 (포항산업과학연구원 건축해양연구본부) ;
  • 정경수 (포항산업과학연구원 건축해양연구본부) ;
  • 김진호 (포항산업과학연구원 건축해양연구본부)
  • Received : 2010.08.13
  • Accepted : 2010.10.06
  • Published : 2010.10.27

Abstract

Five concrete-encased steel columns using high-strength steel($f_{ys}$=801MPa) and high-strength concrete($f_{ck}$=97.7MPa) were tested to investigate the eccentric axial load-displacement relationship. Test parameters included the type, yield strength, and spacing of lateral reinforcement, and also the eccentricity of axial load. To analyze the behavior of the column specimens, the nonlinear sectional analysis using strain-compatibility and confinement effect was performed. To examine the applicability of existing design codes for the composite sections using high-strength materials, the test results were also compared with the predictions by the nonlinear analysis and the design codes. The confinement effect of lateral reinforcement increased the ductility of concrete, and the moment capacity of the column specimens increased with the ductility of concrete. The prediction by the nonlinear analysis gave good agreement with the test results. On the other hand, the ACI 318 neglecting lateral confinement effect underestimated the strength of the column specimens, and the Eurocode 4 using complete plastic capacity of steel section overestimated.

고강도강재 및 고강도콘크리트를 적용한 매입형 합성기둥의 편심압축시 거동특성을 연구하기 위하여, 항복강도 $f_{ys}$=913MPa 강재와 압축강도 $f_{ck}$97.7MPa 콘크리트를 사용하여 실험연구를 실시하였다. 주요변수는 횡철근의 종류, 항복강도, 배근간격, 그리고 편심하중거리이다. 거동특성을 분석하기 위하여 구속효과와 변형률적합조건을 적용한 비선형 단면해석을 실시하였으며, 현행 설계기준들의 적용성을 판단하기 위해 실험결과와 비교하였다. 횡구속효과에 의하여 콘크리트의 연성능력은 증가하였으며, 이에 따라 단면의 휨모멘트강도가 증가하였다. 비선형해석을 통해 합성단면의 축력-모멘트 상관관계를 예측한 결과는 실험결과와 잘 일치한 반면, 강재의 완전소성강도를 사용하는 Eurocode 4는 실험체의 성능을 과대평가하였으며, 콘크리트의 횡구속효과를 고려하지 않은 ACI 318은 과소평가하였다.

Keywords

References

  1. 대한건축학회(2010) 건축구조기준 2009 (KBC).
  2. American Concrete Institute (ACI) (2007) Building Code Requirements for Structural Concrete (ACI 318M-08) and Commentary, ACI Committee 318, Farmington Hills. Mich.
  3. American Institute of Steel Construction (AISC) (1999) Load and Resistance Factor Design Specifications for Structural Steel Buildings, Chicago.
  4. American Institute of Steel Construction (AISC) (2005) Specification for Structural Steel Buildings, ANSI/AISC 360-05, Chicago, III.
  5. Architectural Institute of Japan (AIJ) (2001) Standard for Structural Calculation of Steel Reinforced Concrete Structures, 5th Ed. (in Japanese)
  6. Bergmann, R., Puthli, R., and Fleischer, O. (2000) Behavior of Composite Columns Using High Strength Steel Sections, Proc. of the Fourth International Conference on Composite Construction in Steel and Concrete, Composite Construction in Steel and Concrete IV, pp.528-538.
  7. Chen, C.C. and Lin, N.J. (2006) Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns, Journal of Constructional Steel Research, Vol. 62, pp. 424-433. https://doi.org/10.1016/j.jcsr.2005.04.021
  8. Cusson, D. and Paultre, P. (1995) Stress-Strain Model for Confined High-Strength Concrete, Journal of Structural Engineering, ASCE, Vol. 121, No. 3, pp.468-477. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(468)
  9. El-Tawil, S. and Deierlein, G.G. (1996) Fiber Analysis of Composite Beam-column Cross Sections, Struct. Engrg. Rep., School of Civ. and Envir. Engrg., Cornell University, Ithaca, N.Y.
  10. European Committee for Standardization(CEN) (2004) Design of Composite Steel and Concrete Structures - part 1-1: General Rules and Rules for Buildings, BS EN 1994-1-1:2004, CEN, Brussels, Belgium.
  11. Kato, B. (1996) Column Curves of Steel-concrete Composite Members, Journal of Constructional Steel Research, Vol. 39, No. 2, pp.121-135. https://doi.org/10.1016/S0143-974X(96)00030-2
  12. Lin, T.Y. and Itaya, R. (1957) A Prestressed Concrete Column Under Eccentric Loading, PCI Journal, Vol. 2, No. 3, pp.5-17.
  13. Mirza, S.A. and Skrabek, B.W. (1992) Statistical Analysis of Slender Composite Beam-column Strength, Journal of Structural Engineering, ASCE, Vol. 118, No. 5, pp.1312-1332. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1312)
  14. Nakano, Y., Fujisawa, K., Nanba, T., Sakai, J., and Minami, K. (2006) Experimental Study on Elastic -plastic Behavior of SRC Columns with High Strength Steel, The Memoirs of the Faculty of Engineering, Fukuyama University, Vol. 30, pp. 125-136. (in Japanese)
  15. Oh, M.H., Ju, Y.K., Kim, M.H., and Kim, S.D. (2006) Structural Performance of Steel-Concrete Composite Column Subjected to Axial and Flexural Loading, Journal of Asian Architecture and Building Engineering, Vol. 5, No. 1, pp.153-160. https://doi.org/10.3130/jaabe.5.153
  16. Ricles, J.M. and Paboojian, S.D. (1994) Seismic Performance of Steel-encased Composite Columns, Journal of Structural Engineering, ASCE, Vol. 120, No. 8, pp.2474-2494. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2474)
  17. The MathWorks, Inc (2010) $MATLAB^{\circledR}$ Getting Started Guide, ver.7.10(R2010a) (www.mathworks.com).