• Title/Summary/Keyword: load following

Search Result 938, Processing Time 0.032 seconds

고강도 및 파괴인성을 갖는 AI-Li-Cu 합금 개발

  • Kim, Song-Hui;Yun, Yeo-Beom;Hwang, Yeong-Hwa;Choe, Chang-U;Hong, Jun-Pyo;Lee, Eung-Jo
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1993
  • High strength and fracture toughness of Al-Li-Cu alloy(2090 Al alloy) have been achieved by the improvement of melting and casting, extrusion and heat treatment techniques. To establish the sucessful process for semi-industrial scale ingot(20Kg) the following areas have been investigated: (1) Improvement of melting and casting techniques for ingot by introducing atmospheric modifications, vacuum and rotary degassing, and deslagging. (2) The effect of heat treatment on mechanical properties (3) Mechanical characterization by tensile test, fracture toughness test and fatigue crack propagation test. High mechanical properties were found to be intimately related with ingot soundness. Tensile strength of final products varied from 534MPa to 566MPa in peak aged condition while elongation/ductility ranged from 9.0% to 11.9%. From the fracture toughness test with using compact tensile specimen, plane strain fracture toughness($K_{Ic}$) appeared to be 39MPa${\surd}$m in peak aged condition and 23MPa${\surd}$ m in underaged condition. When load ratios of 0.1, 0.3 and 0.5 were given ${\Delta}K_{th}$ was 6.0MPa${\surd}$ m, 5.3MPa${\surd}$ m and 4.3MPa${\surd}$ m respectively.

  • PDF

Flow properties of thermoplasticized Gutta Percha obturation materials (열가소성 가타퍼차 근관충전재료의 흐름성 특성)

  • Baek, Myong-Hyun;Song, Bu-Seok;Choi, Eun-Mi
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.311-320
    • /
    • 2018
  • The purpose of this study is to evaluate the flow ability of the thermoplasticized Gutta Percha in different temperatures. Four Gutta Percha products were classified by its hardness (soft, medium, and hard) and were experimented by the Rheometer (Melt flow indexer MFI-10, DAVENPORT, England) measuring apparatus, in $(23{\pm}2)^{\circ}C$, and in a relative humidity of ($50{\pm}5$) %, following the guidelines of ISO 1133-1:2011. The heating temperature ranged from $108^{\circ}C$, $160^{\circ}C$ to $200^{\circ}C$, and the load at 2.16 kg and 3.8 kg. The Gutta Percha was cut in 5 mm to be suitable for the rheometer pressurization process. After the experiment was conducted with a preheating time of 5 minutes, a cutting time of 5-240 seconds, and a sample of 10 grams, the Gutta Percha did not show any changes in fluidity for $108^{\circ}C$, $160^{\circ}C$, but showed a change in its flow ability in $200^{\circ}C$. Also, the Gutta Percha did not show any changes in its fluidity when it was pressurized by 2.16 and 3.8 kilograms. Therefore, this experiment shows that the heating temperature and the cut-off time showed a significance while measuring the melt flow rate.

Wall Cuckoo: A Method for Reducing Memory Access Using Hash Function Categorization (월 쿠쿠: 해시 함수 분류를 이용한 메모리 접근 감소 방법)

  • Moon, Seong-kwang;Min, Dae-hong;Jang, Rhong-ho;Jung, Chang-hun;NYang, Dae-hun;Lee, Kyung-hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.6
    • /
    • pp.127-138
    • /
    • 2019
  • The data response speed is a critical issue of cloud services because it directly related to the user experience. As such, the in-memory database is widely adopted in many cloud-based applications for achieving fast data response. However, the current implementation of the in-memory database is mostly based on the linked list-based hash table which cannot guarantee the constant data response time. Thus, cuckoo hashing was introduced as an alternative solution, however, there is a disadvantage that only half of the allocated memory can be used for storing data. Subsequently, bucketized cuckoo hashing (BCH) improved the performance of cuckoo hashing in terms of memory efficiency but still cannot overcome the limitation that the insert overhead. In this paper, we propose a data management solution called Wall Cuckoo which aims to improve not only the insert performance but also lookup performance of BCH. The key idea of Wall Cuckoo is that separates the data among a bucket according to the different hash function be used. By doing so, the searching range among the bucket is narrowed down, thereby the amount of slot accesses required for the data lookup can be reduced. At the same time, the insert performance will be improved because the insert is following up the operation of the lookup. According to analysis, the expected value of slot access required for our Wall Cuckoo is less than that of BCH. We conducted experiments to show that Wall Cuckoo outperforms the BCH and Sorting Cuckoo in terms of the amount of slot access in lookup and insert operations and in different load factor (i.e., 10%-95%).

Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urography

  • Kim, Sang Youn;Cho, Jeong Yeon;Lee, Joongyub;Hwang, Sung Il;Moon, Min Hoan;Lee, Eun Ju;Hong, Seong Sook;Kim, Chan Kyo;Kim, Kyeong Ah;Park, Sung Bin;Sung, Deuk Jae;Kim, Yongsoo;Kim, You Me;Jung, Sung Il;Rha, Sung Eun;Kim, Dong Won;Lee, Hyun;Shim, Youngsup;Hwang, Inpyeong;Woo, Sungmin;Choi, Hyuck Jae
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1119-1129
    • /
    • 2018
  • Objective: To compare the image quality of low-tube-voltage and low-iodine-concentration-contrast-medium (LVLC) computed tomography urography (CTU) with iterative reconstruction (IR) with that of conventional CTU. Materials and Methods: This prospective, multi-institutional, randomized controlled trial was performed at 16 hospitals using CT scanners from various vendors. Patients were randomly assigned to the following groups: 1) the LVLC-CTU (80 kVp and 240 mgI/mL) with IR group and 2) the conventional CTU (120 kVp and 350 mgI/mL) with filtered-back projection group. The overall diagnostic acceptability, sharpness, and noise were assessed. Additionally, the mean attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM) in the urinary tract were evaluated. Results: The study included 299 patients (LVLC-CTU group: 150 patients; conventional CTU group: 149 patients). The LVLC-CTU group had a significantly lower effective radiation dose ($5.73{\pm}4.04$ vs. $8.43{\pm}4.38mSv$) compared to the conventional CTU group. LVLC-CTU showed at least standard diagnostic acceptability (score ${\geq}3$), but it was non-inferior when compared to conventional CTU. The mean attenuation value, mean SNR, CNR, and FOM in all pre-defined segments of the urinary tract were significantly higher in the LVLC-CTU group than in the conventional CTU group. Conclusion: The diagnostic acceptability and quantitative image quality of LVLC-CTU with IR are not inferior to those of conventional CTU. Additionally, LVLC-CTU with IR is beneficial because both radiation exposure and total iodine load are reduced.

Smart City Energy Inclusion, Towards Becoming a Better Place to Live

  • Cha, Sang-Ryong
    • World Technopolis Review
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2019
  • Where is a better place to live? In the coming era, this should be more than simply a livable place. It should be an adaptable place that has a flexible system adaptable to any new situation in terms of diversity. Customization and real-time operation are needed in order to realize this technologically. We expect a smart city to have a flexible system that applies technologies of self-monitoring and self-response, thereby being a promising city model towards being a better place to live. Energy demand and supply is a crucial issue concerning our expectations for the flexible system of a smart city because it is indispensable to comfortable living, especially city living. Although it may seem that energy diversification, such as the energy mix of a country, is a matter of overriding concern, the central point is the scale of place to build grids for realizing sustainable urban energy systems. A traditional hard energy path supported by huge centralized energy systems based on fossil and nuclear fuels on a national scale has already faced difficult problems, particularly in terms of energy flexibility/resilience. On the other hand, an alternative soft energy path consisting of small diversified energy systems based on renewable energy sources on a local scale has limitations regarding stability, variability, and supply potential despite the relatively light economic/technological burden that must be assumed to realize it. As another alternative, we can adopt a holonic path incorporating an alternative soft energy path with a traditional hard energy path complimentarily based on load management. This has a high affinity with the flexible system of a smart city. At a system level, the purpose of all of the paths mentioned above is not energy itself but the service it provides. If the expected energy service is fixed, the conclusive factor in choosing a more appropriate system is accessibility to the energy service. Accessibility refers to reliability and affordability; the former encompasses the level of energy self-sufficiency, and the latter encompasses the extent of energy saving. From this point of view, it seems that the small diversified energy systems of a soft energy path have a clear advantage over the huge centralized energy systems of a hard energy path. However, some insuperable limitations still remain, so it is reasonable to consider both energy systems continuing to coexist in a multiplexing energy system employing a holonic path to create and maintain reliable and affordable access to energy services that cover households'/enterprises' basic energy needs. If this is embodied in a smart city concept, this is nothing else but smart energy inclusion. In Japan, following the Fukushima nuclear accident in 2011, a trend towards small diversified energy systems of a soft energy path intensified in order to realize a nuclear-free society. As a result, the Government of Japan proclaimed in its Fifth Strategic Energy Plan that renewable energy must be the main source of power in Japan by 2050. Accordingly, Sony vowed that all the energy it uses would come from renewable sources by 2040. In this situation, it is expected that smart energy inclusion will be achieved by the Japanese version of a smart grid based on the concept of a minimum cost scheme and demand response.

Variation of Liquid to Gas Ratio and Sulfur Oxide Emission Concentrations in Desulfurization Absorber with Coal-fired Thermal Power Plant Outputs (석탄화력 발전설비의 출력에 따른 탈황 흡수탑 액기비와 황산화물 배출농도 변화에 대한 연구)

  • Kim, Kee-Yeong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.39-47
    • /
    • 2018
  • In this research, when the output of the standard coal-fired thermal power plant operating continuously at the rated output of 500 MW is changed to operate at 300 to 500 MW, the amount of sulfur oxide produced and the amount of sulfur oxide in the absorption tower of desulfurization equipment and proposed an extra liquid to gas ratio improvement inversely proportional to the output. In order to calibrate the combustion efficiency at low power, the ratio of sulfur oxides relative to the amount of combustion gas is increased as the excess air ratio is increased. When the concentration of sulfur oxide at the inlet of the desulfurization absorber was changed from 300 to 500 ppm along with the output fluctuation. The liquid to gas ratio of limestone slurry and combustion gas was changed from 10.99 to 16.27. Therefore, if the concentration of sulfur oxides with output of 300 MW is x, The following correlation equation is recommended for the minimum required flow rate of slurry for the reduction of surplus energy due to the increase of the liquid weight at low load. $y1[m^3/sec]=0.11x+3.74$

  • PDF

Axial Compression of Stub Columns for Concrete-filled Square Steel Tubes (일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동)

  • Yoo, Yeong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.617-624
    • /
    • 2021
  • Concrete-filled steel tubular columns can improve the strength and deformation capacity of structures, thereby enabling the development of efficient structures. The Korean design standard (KDS41) regarding concrete-filled steel tubular structures, established by the architectural institute of Korea in 2005, was revised in 2009 and 2016. The objective was to understand the compressive strengths and deformation capacity of stub columns for concrete-filled square steel tubes under uniaxial compression and validate the KDS41's standard code for necessary corrections. Experiments were conducted on 26 specimens with parameters, such as the width-thickness ratio of cold-formed square tubes. The following values of the stub columns for concrete-filled square steel tubes were obtained: compressive strengths, relationship between the axial load and axial displacement, and failure modes. An analysis of these results enabled an understanding of the concrete-filled effect and the influence of the wide-thickness ratio. The compressive strengths of filled concrete saw a 9% increase compared to a state of uniaxial stress, which must be noted in a future edition of KDS41. After benchmarking the results regarding square steel tubes generated by cold forming to the guidelines provided by the KDS41, the KDS41's value of 2.26 for the limiting width-to-thickness ratio for the compact section was found to be inflated. With a safety concern, this paper proposes a more conservative value of 1.35.

An Analysis of the Effect of PBD Discharge Capacity to Leave Period (방치기간에 따른 PBD의 통수능 효과 분석)

  • Lee, Keeyong;Park, Minchul;Jeong, Sangguk;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.39-49
    • /
    • 2011
  • Recently PBD method, one of acceleration of consolidation methods is used in the soft ground to shorten consolidation time for fast settlement during construction. It is economical and easy to work. Discharge capacity of PBD is sensitive in proportion to thickness of soft ground layer, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity is large according to ground condition, construction condition and soil properties. In addition, when embankment loading is not conducted instantly after PBD setting due to rain or lack of embankment material supply, it causes leaving period problems. But cause and analysis of those problems for discharge capacity is lack. So, in this test, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with leaving period. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. Then leave 0day, 30day, 60day and 90day. And then, load following the loading step of 30, 70 and 120kPa using a pressure device. As a result, the longer leaving period, discharge capacity is reduced. It is caused by a decrease of discharge area caused by creep transformation moisture absorption of PBD filter after long leaving period.

A Study on Bounce Height and Impact Energy Considering Slope Height, Rockfall Weight Using Rockfall Program Considering Slope Height, Rockfall Weight (낙석해석프로그램을 이용한 비탈면 높이, 낙석중량별 도약높이 및 충격에너지 검토)

  • You, Byung-Ok;Han, Won-Jun;Lee, Sang-Duk;Shim, Jea-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2011
  • The rockfall protection fence installed to secure safety against rockfall occurring in cut slope has been designed under the condition with 50kJ of impact energy arising when the 400kg of rock block is falling from 12.5m height. However, in falling case of bigger rock block or from higher place, it is hard to be secure of safety with existing rockfall protection fence. Using the rockfall program, safety analysis for rockfall is conducted in this paper by changing slope height, separating distance from fence, and slope angle, according to rock block sizes. In the result of analysis, when a 400kg of rock block which is designed load is fallen, the existing rockfall protection fence with 2.5m height can secure most of rock fall except some cases for the slope having 20m or less hight, whereas for more than 20m height, the fallen rock is frequently splattered over the rockfall protection fence, as well as the impact energy of rockfall may exceed designed impact energy. Therefore, in the design of rock fence, it is considered appropriate to design that after conducting safety review for rockfall according to the ground conditions, evaluating the bounce height and impact energy of rock fall, and then installing appropriate rockfall protection fence would be applicable rather than just following standards based design drawing.

In-plane and Out-of-plane Seismic Performances of Masonry Walls Strengthened with Steel-Bar Truss Systems (강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 내진 거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sanghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • This experimental study was conducted to evaluate the in-plane and out-of-plane seismic performances of an unreinforced masonry walls (URMs) strengthened with prestressed steel-bar truss systems developed in the present investigation. The truss systems were installed on both faces of the walls. All the wall specimens were subjected to lateral in-plane or out-of-plane cyclic loads at the fixed gravity stress of 0.25 MPa. The seismic performance of the strengthened specimens was compared to that measured in the counterpart URM. When compared with the lateral load-displacement curve of the URM, the strengthened walls exhibited the following improvements: 190% for initial stiffness, 180% for peak strength, 610% for accumulated energy dissipation capacity, and 510% for equivalent damping ratio under the in-plane state; the corresponding improvements under the out-of-plane state were 230% for initial stiffness, 190% for peak strength, 240% for accumulated energy dissipation capacity, and 120% for equivalent damping ratio, respectively. These results indicate that the developed technique is very promising in enhancing the overall seismic performance of URM.