• Title/Summary/Keyword: liquid swine manure

Search Result 66, Processing Time 0.027 seconds

Effects of Livestock Manure Application on Growth Characteristics, Yield and Feed Value of Sorghum-sudangrass Hybrid and NO3-N Leaching in Paddy Field (논에서 수수 X 수단그라스 교잡종 재배시 가축분뇨 이용이 생육특성, 수량, 사료가치 및 NO3-N의 용탈에 미치는 영향)

  • Lim, Young-Chul;Yoon, Sei-Hyung;Kim, Won-Ho;Kim, Jong-Geun;Shin, Jae-Soon;Jung, Min-Woong;Seo, Sung;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.233-238
    • /
    • 2006
  • The experimental work was conducted to determine the growth characteristics, yield and feed value of sorghum-sudangrass hybrid and $NO_{3^-}N$ leaching by application of various types of livestock manure (LM) at National Livestock Research Institute, Suwon, for 3years (2003-3005). The growth characteristics in chemical fertilizer (CF) was better than others in general. The growth characteristic of sorghum-sudangrass hybrid by the various type of LM was good in order of composted swine manure (CSM) > liquid swine manure (LSM) > composted cattle manure (CSM), whereas the growth characteristics by application level of LM was good in order of LM 100%+CF 25%>LM 75%+CF 25%>LM 100%. Dry matter(DM) yield in LSM and CSM increased by 23% and 18% respectively while DM yield in CCM decreased 24% as compared to CF. Moreover total digestible nutrients (TDN) in LSM and CSM increased by 24% and 18% respectively while TDN in CCM decreased 12% as compared to CF. Crude protein and relative feed value in LM decreased compared to those in CF. $NO_{3^-}N$ leaching by application level of LM showed that there was an increase in order of LM 100%+ CF 25%>LM 75%+CF 25%>LM 100%. Also the high concentration of $NO_{3^-}N$ occurred shortly after application of LM.

Effect of organic matter addition on the solubility of arsenic in soil and uptake by rice: a field-scale study (유기물 시용이 토양 내 비소의 용해도와 벼의 비소 흡수에 미치는 영향)

  • Yoo, Ji-Hyock;Kim, Dan-Bi;Kim, Won-Il;Kim, Sung-Chul
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.439-446
    • /
    • 2021
  • A field-scale study was conducted to evaluate the effect of organic matter amendments on the solubility of arsenic (As) in paddy soil and uptake by rice. Six organic matter (rice bran, rice straw, pig/cattle/fowls manure compost and swine liquid manure) were added to two polluted soils with high As (53 mg kg-1) and low As concentration (28 mg kg-1), and changes in soil solution constituents was monitored. The mean As concentrations in soil solution from the high As soil with rice bran, pig manure compost and swine liquid manure addition were significantly higher (0.61-1.15 mg L-1) than that of the control (0.42-0.66 mg L-1). Regression between As and Fe in soil solution indicated that As was attributable to reductive dissolution of Fe (hydr)oxides and it was driven by organic matter addition. Mean As concentrations in brown rice from the high As soil were 0.35-0.46 mg kg-1, above the maximum safety level of inorganic As (0.35 mg kg-1), and tended to be higher in organic matter amended soils than that of the control. The significant correlation between grain As and soil solution As was not observed and it was probably attributable to As tolerance of rice causing the reduction of As uptake and/or translocation to grain. However, considering the significant As release in soil solution from the high As soil and the tendency of grain As elevation after organic matter addition, it is needed to be cautious for food safety when amending organic matter to paddy soil with high As concentration.

Effects of Devarda's Alloy Addition on Determination of Total Nitrogen and Inorganic Nitrogen in Liquid Livestock Manure (Devarda's alloy 첨가가 축산분뇨 액비의 총 질소 및 무기태 질소 정량에 미치는 영향)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Lee, Seong-Eun;Noh, Jae-Seung;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.223-226
    • /
    • 2012
  • Liquid livestock manure (LLM) has been used as a nitrogen fertilizer source for horticulture plants. LLM contains organic nitrogen (N), ammonium, nitrate, and nitrite. The amount of nitrate and nitrite in LLM are usually small compared to the amount of ammonium in it and so they can be negligible if total nitrogen (N) concentration in LLM is higher than $1,000mg\;L^{-1}$. However, if total N concentration in LLM is less than $1,000mg\;L^{-1}$, the amount of nitrate and nitrite may affect total N concentration in LLM. Currently, Kjeldahl digestion method is mainly used for ammonium-N in LLM. Therefore, it is ineffective to analyze nitrate-N and nitrite-N. The objective of this study was to evaluate whether the total N concentrations are affected by the amount of nitrate-N and nitrite-N with diverse LLMs by Kjeldahl method (with and without Devarda's alloy after Conc. sulfuric acid digestion). Five liquid livestock manure samples were collected at swine farms in Ansung and Icheon. All LLM samples were stored at $25^{\circ}C$, subsampled at every $15^{th}$ day for 90 days, and analyzed for total N, ammonium-N, and nitrate-N. At the $90^{th}$ day, LLM samples were analyzed with and without Devarda's alloy after Conc. sulfuric acid digestion. Potassium nitrate, ammonium nitrate, and ammonium chloride were used to determine the N recovery percentages. Total N concentration ranged from 560 to $4,230mg\;L^{-1}$. Nitrate-Ns were found in all LLM samples, ranged from 21 to $164mg\;L^{-1}$. N recovery percentages with potassium nitrate were 0 % without Devarda's alloy and 100% with Devarda's alloy because adding Devarda's alloy facilitated nitrate-N into ammonium-N conversion. Total Ns were significantly different between two methods, with and without Devarda's alloy. Total N concentrations were $210mg\;L^{-1}$ at LLM 4 and $370mg\;L^{-1}$ at LLM 5 without Devarda's alloy and $290mg\;L^{-1}$ at LLM 4 and $490mg\;L^{-1}$ at LLM 5 with Devarda's alloy. These results suggest that if total N of LLM is less $1,000mg\;L^{-1}$, additional procedure such as adding Devarda's alloy can be used to estimate the total N and inorganic N better.

Enhancement of Biodegradation Rate of Petroleum Hydrocarbons-contaminated Soil with Addition of Organic Composite Nutrients and a Chemical Oxidation (유기성 영양분 첨가 및 화학적 산화 연계를 통한 유류오염 토양의 생물학적 정화효율 향상에 관한 연구)

  • Kim, Guk-Jin;Oh, Seung-Taek;Lee, Cheol-Hyo;Seo, Sang-Ki;Kang, Chang-Hwan;Chang, Youn-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.59-66
    • /
    • 2008
  • A biological study was conducted to evaluate the enhancement of landfarming of soil contaminated with petroleum hydrocarbon (TPH) applying organic composite nutrients and a chemical oxidation during bioremediation. The target value of soil TPH after treatment was 500 mg/kg TPH. Addition of an organic compost and liquid swine manure for the removal of soil THP showed higher efficiency as 84.4% and 92.2% respectively than inorganic nutrients of 80.2%. In addition to the removal of non-biodegradable portion of residual hydrocarbons in soil, a chemical oxidation was applied during tailing period of the biological remediation, which showed high remediation efficiency as 98.1% compared with single bioremediation efficiency of 84.7%.

Growth Characteristics and Productivity of Winter Crops After the Continuous Whole Crop Rice Cultivation in Paddy Field in Middle Region (중부지역 답리작에서 동계 사료작물의 조기파종 효과)

  • Lim, Young-Chul;Yoon, Sei-Hyung;Kim, Won-Ho;Kim, Jong-Geun;Choi, Gi-Jun;Kim, Meing-Jooung;Jung, Min-Woong;Seo, Sung;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.3
    • /
    • pp.183-188
    • /
    • 2007
  • This study was conducted to determine the effects of seeding date on agronomic characteristics, productivity and feed value of Italian ryegrass, barley and rye during cropping after rice in Suwon, middle region of Korea, during 2004 and 2005. In general, early seeding (26 September) showed longer plant length and branch numbers per square meter than late sowing (11 October). Italian ryegrass had more early seeding effect than barley and rye. The yield of each plant was affected by sowing date in all experiments: the earlier seeding had higher yields than late seeding. In case of Italian ryegrass and barley as late-heading varieties showed more early seeding effect than rye. On the other hand, feed value tended to respond differently to yields. The feed value of each plant were based on liquid swine manure (12%) > composted cattle manure (7%) > composted swine manure (2%). The present results highlight the earlier planting obtained higher yield compared to those planted conventionally.

Effect of Application Methods for Liquid Pig Slurry on Growth and Yield of Rice(Oryza sativa L.) (가축 액상분뇨의 시용방법이 벼의 생육과 수량에 미치는 영향)

  • Ryoo J. W;Hong M. Z.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • Field experiments were conducted in 2002 on sandy loam soil under variable fertilizer management; swine slurry and chemical fertilizer. The effect of different fertilizer management and application method on the growth characteristics and yield of rice were determined. The rice was planted to examine the effect of swine slurry on the crop growth. As slurry manure was fertilized, yield of each group of rice was decreased from 3 to $5\%$. In conclusion, basal application of slurry was maintained productivity of rice, but to improve of productivity of rice, the rice should be fertilized with the basal application of animal slurry and supplementary application of chemical fertilizer. The results indicates that application of animal slurry improves quality of rice rather quantity, which means grain yield. Rice quality of the slurry+chemical and the slurry were significantly better than that of the chemical fertilizer. That indicates application of animal slurry could improve rice quality. Application of animal slurry seemingly has potentials for reducing pollution of animal slurry and improving environment of rural area as well as producing high-quality rice.

  • PDF