• 제목/요약/키워드: liquid chromatography-electrospray ionization-mass spectrometry

검색결과 169건 처리시간 0.024초

LC-ESI-MS/MS를 이용한 용담사간탕의 주요 성분 분석 (Quantitative Analysis of the Marker Constituents in Yongdamsagan-Tang using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry)

  • 서창섭;하혜경
    • 생약학회지
    • /
    • 제48권4호
    • /
    • pp.320-328
    • /
    • 2017
  • Yongdamsagan-tang has been used to treat the urinary disorders, acute- and chronic-urethritis, and cystitis in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous analysis of the 20 bioactive marker compounds, geniposidic acid, chlorogenic acid, geniposide, liquiritin apioside, acteoside, calceolarioside B, liquiritin, nodakenin, baicalin, liquiritigenin, wogonoside, baicalein, glycyrrhizin, wogonin, glycyrrhizin, wogonin, saikosaponin A, decursin, decursinol angelate, alisol B, alisol B acetate, and pachymic acid in traditional herbal formula, Yongdamsagan-tang. Chromatographic separations of all marker compounds were conducted using a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization source in the positive and negative modes. The flow rate was 0.3 mL/min and injection volume was $2.0{\mu}L$. The correlation coefficient of 20 marker compounds in the test ranges was 0.9943-1.0000. The limits of detection and quantification values of the all marker components were 0.11-6.66 and 0.34-19.99 ng/mL, respectively. As a result of the analysis using the optimized LC-ESI-MS/MS method, three compounds, geniposidic acid (from Plantaginis Semen), alisol B (from Alismatis Rhizoma), and pachymic acid (from Poria Sclerotium), were not detected in this sample. While the amounts of the 17 compounds except for the geniposidic acid, alisol B, and pachymic acid were $0.04-548.13{\mu}g/g$ in Yongdamsagan-tang sample. Among these compounds, baicalin, bioactive marker compound of Scutellariae Radix, was detected at the highest amount as a $548.13{\mu}g/g$.

UPLC-ESI-MS/MS를 이용한 온경탕 중 25종 성분의 함량분석 (Quantification of the 25 Components in Onkyung-Tang by Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제47권1호
    • /
    • pp.92-101
    • /
    • 2016
  • In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous determination of the 25 marker components, including chlorogenic acid, gallic acid, oxypaeoniflorin, homogentisic acid, methyl gallate, caffeic acid, 3,4-dihydroxybenzaldehyde, paeoniflorin, albiflorin, liquiritin, nodakenin, ferulic acid, ginsenoside Rg1, liquiritigenin, coumarin, cinnamic acid, benzoylpaeoniflorin, ginsenoside Rb1, cinnamaldehyde, paeonol, glycyrrhizin, 6-gingerol, evodiamine, rutecarpine, and spicatoside A in traditional Korean formula, Onkyung-tang. All analytes were separated on a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was carried out using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization (ESI) source in the positive and negative modes. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$, respectively. The correlation coefficient of all analytes in the test ranges was greater than 0.98. The limits of detection and quantification values of the 25 marker compounds were in the ranges 0.03-19.43 and 0.09-58.29 ng/mL, respectively. As a result, methyl gallate, 3,4-dihydroxybenzaldehyde, evodiamine, and rutecarpine were not detected in this sample and the concentrations of the 21 compounds except for the above 4 compounds were $33.09-3,496.32{\mu}g/g$ in Onkyung-tang decoction. Among these compounds, paeonol was detected at the highest amount as a $3,496.32{\mu}g/g$.

LC-MS/MS를 이용한 당귀수산 추출물 중 17종 성분의 함량분석 (Quantitative Analysis of the Seventeen Marker Components in Dangguisu-san Using Ultra-performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry)

  • 서창섭;신현규
    • 약학회지
    • /
    • 제58권3호
    • /
    • pp.158-164
    • /
    • 2014
  • Dangguisu-san is a well-known traditional Korean herbal medicine prescription and has been widely used to treat ecchymosis, blood stagnation, and pain resulting from physical shock in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer method was established for the simultaneous determination of the 17 biomarker components in Dangguisu-san. All analytes were separated on an UPLC BEH $C_{18}$ ($100{\times}2.1$ mm, $1.7{\mu}m$) column and maintained at $45^{\circ}C$. The mobile phase consisted of two solvent systems, 0.1% (v/v) formic acid in water (A) and acetonitrile (B) by gradient flow. The injection volume was $2.0{\mu}l$ and the flow rate was 0.3 ml/min with detection at mass spectrometer. Calibration curves of the 17 biomarker components were acquired with $r^2$ values ${\geq}0.9951$. The values of limit of detection and quantification of all analytes were 0.02~6.32 ng/ml and 0.05~18.95 ng/ml, respectively. The amounts of the 17 components in Dangguisu-san sample were $3.17{\sim}13,224.50{\mu}g/g$.

축산물 중 잔류 성장보조제 분석을 위한 액체크로마토그라피-질량분석법 개발 및 적용 (Development of Analytic Methods for Veterinary Drug Residue in Animal Products by Liquid Chromatography-Mass Spectrometry)

  • 이수현
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.107-116
    • /
    • 2021
  • 본 연구에서는 동물식품 내 잔류하는 동물의약품 중 성장보조제인 에스트라디올(Estradiol-17��), 테스토스테론(Testosterone), 프로게스테론(Progesterone)에 대한 분석법을 개발하고자 하였다. 분석대상 물질은 액체크로마토그라피를 사용하여 분리하였고, electrospray ionization(ESI) 과정을 거쳐 질량분석기에 주입되어 multiple reaction monitoring(MRM) 모드로 검출하였다. 개발된 분석법은 CODEX CAC/GL 71-2009에 근거하여 유효성을 검증하였고, 분석의 실효성 허용범위를 충족함을 확인하였다. 국내 유통되는 소고기, 돼지고기, 닭고기에 대해 확립된 분석법으로 분석을 진행하여 실제시료 적용성을 확인하였다. 이를 통해 개발된 분석법이 국내 유통 축산물에서 확인되고 있는 성장보조제 일부에 대해 신속하고 신뢰성 높은 분석이 가능함을 확인하였다. 후속 연구를 통해 확립된 분석법을 기반으로 분석대상 성장보조제의 범위를 확장하고, 이를 모두 포함시켜 동시분석법을 확립한다면 활용성이 높은 분석법이 완성될 것으로 확신한다.

Quantitative Proteomics Towards Understanding Life and Environment

  • Choi, Jong-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • 한국환경농학회지
    • /
    • 제25권4호
    • /
    • pp.371-381
    • /
    • 2006
  • New proteomic techniques have been pioneered extensively in recent years, enabling the high-throughput and systematic analyses of cellular proteins in combination with bioinformatic tools. Furthermore, the development of such novel proteomic techniques facilitates the elucidation of the functions of proteins under stress or disease conditions, resulting in the discovery of biomarkers for responses to environmental stimuli. The ultimate objective of proteomics is targeted toward the entire proteome of life, subcellular localization biochemical activities, and the regulation thereof. Comprehensive analysis strategies of proteomics can be classified into three categories: (i) protein separation via 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification via either Edman sequencing or mass spectrometry (MS), and (iii) proteome quantitation. Currently, MS-based proteomics techniques have shifted from qualitative proteome analysis via 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, toward quantitative proteome analysis. In vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes. protein-labeling tagging with isotope-coded affinity tags, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope-labeled amino acids can be in vivo labeled into live culture cells via metabolic incorporation. MS-based proteomics techniques extend to the detection of the phosphopeptide mapping of biologically crucial proteins, which ale associated with post-translational modification. These complementary proteomic techniques contribute to our current understanding of the manner in which life responds to differing environment.

LC-MS/MS를 이용한 향사육군자탕의 주요성분의 함량분석 (Quantitative Analysis of Hyangsayukgunja-Tang Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제46권4호
    • /
    • pp.352-364
    • /
    • 2015
  • The aim of this study was to quantitatively analyze for quality assessment of eighteen marker compounds, including homogentisic acid, 3,4-dihydroxybenzaldehyde, spinosin, liquiritin, hesperidin, ginsenoside Rg1, liquiritigenin, ginsenoside Rb1, glycyrrhizin, 6-gingerol, atractylenolide III, honokiol, costunolide, dehydrocostuslactone, atractylenolide II, nootkatone, magnolol, and atractylenolide I, in Hyangsayukgunja-tang using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer. The column for separation of eighteen marker components were used a UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}$) and kept at $45^{\circ}C$ by gradient elution with 0.1% (v/v) formic acid in water and acetonitrile as mobile phase. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}l$, respectively. The correlation coefficient of all marker compounds was ${\geq}0.9914$, which means good linearity, within the test ranges. The limits of detection and quantification values of the all analytes were in the ranges 0.04-1.11 and 0.13-3.33 ng/mL, respectively. As a result, five compounds, homogentisic acid, 3,4-dihydroxybenzaldehyde, spinosin, liquiritigenin, and atractylenolide I, in this sample were not detected and the amounts of the 13 compounds except for the 5 compounds were $8.10-6736.37{\mu}g/g$ in Hyangsayukgunja-tang extract.

Ion Mobility Signatures of Glutamine-Containing Tryptic Peptides in the Gas Phase

  • Lee, Hyun Hee L.;Chae, Soo Yeon;Son, Myung Kook;Kim, Hugh I.
    • Mass Spectrometry Letters
    • /
    • 제12권4호
    • /
    • pp.137-145
    • /
    • 2021
  • Herein we report multiple ion mobility (IM) peaks in electrospray ionization IM mass spectrometry (ESI-IM-MS) produced by glutamine residue in peptide. The mobility features of 147 peptides were investigated using ESI-IM-MS combined with liquid chromatography. Of these peptides, 66 presented multiple IM peaks, and analysis of their sequence using collision induced dissociation (CID) revealed that glutamine (Gln), as well as proline (Pro), plays a critical role in generating multiple IM peaks. Mutant-based investigations using Gln-containing peptides indicate that the side chain of Gln promotes intermolecular interactions, inducing multiple structures of the peptide ions in the gas phase. Consequently, the present study demonstrates that the distinct ion mobility signatures identified herein can potentially be used to characterize glutamine-containing peptide ions.

Simultaneous Determination of α-Amanitin and β-Amanitin in Mouse Plasma Using Liquid Chromatography-High Resolution Mass Spectrometry

  • Bang, Young Yoon;Lee, Min Seo;Lim, Chang Ho;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • 제12권3호
    • /
    • pp.112-117
    • /
    • 2021
  • α-Amanitin and β-amanitin are highly toxic bicyclic octapeptides responsible for the poisoning of poisonous mushrooms such as Amanita, Galerina, and Lepiota by inhibiting RNA polymerase II, DNA transcription, and protein synthesis. A sensitive, simple, and selective liquid chromatography-high resolution mass spectrometric method using parallel reaction monitoring mode was developed and validated for the simultaneous determination of α- and β-amanitin in mouse plasma to evaluate the toxicokinetics of α- and β-amanitin in mice. Protein precipitation of 5 μL mouse plasma sample with methanol as sample clean-up procedure and use of negative electrospray ionization resulted in better sensitivity and less matrix effect. The calibration curves for α- and β-amanitin in mouse plasma were linear over the range of 0.5-500 ng/mL. The intra- and inter-day coefficient of variations and accuracies for α- and β-amanitin at four quality control concentrations were 3.1-14.6% and 92.5-115.0%, respectively. The present method was successfully applied to the toxicokinetic study of α- and β-amanitin after an oral administration of α- and β-amanitin at 1.5 mg/kg dose to male ICR mice.

Quantification of Fargesin in Mouse Plasma Using Liquid Chromatography-High Resolution Mass Spectrometry: Application to Pharmacokinetics of Fargesin in Mice

  • Lee, Min Seo;Lim, Chang Ho;Bang, Young Yoon;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • 제13권1호
    • /
    • pp.20-25
    • /
    • 2022
  • Fargesin, a tetrahydrofurofuranoid lignan isolated from Flos Magnoliae, shows anti-inflammatory, anti-oxidative, anti-allergic, and anti-hypertensive activities. To evaluate the pharmacokinetics of fargesin in mice, a sensitive, simple, and selective liquid chromatography-high resolution mass spectrometric method using electrospray ionization and parallel reaction monitoring mode was developed and validated for the quantification of fargesin in mouse plasma. Protein precipitation of 6 µL mouse plasma with methanol was used as sample clean-up procedure. The standard curve was linear over the range of 0.2-500 ng/mL in mouse plasma with the lower limit of quantification level at 0.2 ng/mL. The intra- and inter-day coefficient variations and accuracies for fargesin at four quality control concentrations including were 3.6-11.3% and 90.0-106.6%, respectively. Intravenously injected fargesin disappeared rapidly from the plasma with high clearance values (53.2-55.5 mL/min/kg) at 1, 2, and 4 mg/kg doses. Absolute bioavailability of fargesin was 4.1-9.6% after oral administration of fargesin at doses of 1, 2, and 4 mg/kg to mice.

Determination of nucleosides in human urine by high-performance liquid chromatography with electrospray ionization mass spectrometry(LC/ESI-MS)

  • Lee, Sang-Hee;Jung, Byung-Hwa;Kim, Sun-Yeou;Kim, Ho-Cheol;Chung, Bong-Chul
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.290.1-290.1
    • /
    • 2003
  • Oxidative DNA damage has been associated with many disease. Quantation of DNA adducts is considered to be a useful biomarker of oxidative DNA damage because its formation can also be induced by oxidative stress. Extensive efforts have been taken to identify the analytical methods for minimizing the artifactual formation of oxidative DNA damage. We have done direct analysis of DNA adducts using LC/ESI-MS without urine sample extraction. (omitted)

  • PDF