• 제목/요약/키워드: liquid alloy

검색결과 398건 처리시간 0.024초

Effect of Dealloying Condition on the Formation of Nanoporous Structure in Melt-Spun Al60Ge30Mn10 Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제46권3호
    • /
    • pp.160-163
    • /
    • 2016
  • Effect of dealloying condition on the formation of nanoporous structure in melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy has been investigated in the present study. In as-melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy spinodal decomposition occurs in the undercooled liquid during cooling, leading to amorphous phase separation. By immersing the as-melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy in 5 wt% HCl solution, Al-rich amorphous region is leached out, resulting in an interconnected nano-porous $GeO_x$ with an amorphous structure. The dealloying temperature strongly affects the whole dealloying process. At higher dealloying temperature, dissolution kinetics and surface diffusion/agglomeration rate become higher, resulting in the accelerated dealloying kinetics, i.e., larger dealloying depth and coarser pore-ligament structure.

원심 주조한 니켈-크롬 합금의 성량 변화 및 주조 온도에 따른 산화물 측정 (Composition of nickel-chromium alloy on the centrifugal casting and the influence of quantitative of oxides on the casting temperature)

  • 김원수
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.361-368
    • /
    • 2012
  • Purpose: The aim of this study was to analysis the composition on the centrifugal casting and the oxide on the casting temperature. Methods: The nickel based alloy were used in this study. Wax pattern specimens (10*10*2) were invested with phosphate-bonded investment in metal rings, the liquid/powder ratio and overall burn-out schedules for these investments were followed in accordance with the manufacturer's instructions. After casting, the alloy specimens were evaluated as regards composition(EPMA). The casting temperatures were as follows: $1400^{\circ}C$ and $1700^{\circ}C$. The quantitative analysis of oxides were scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and line scanning. Results: Nearer the injection lines showed that there is a large amount of nickel. Quantitative of oxides of Ni-Cr alloy cast from $1400^{\circ}C$ is lager than Ni-Cr alloy cast from $1700^{\circ}C$. Conclusion: Casting when using a centrifugal casting machine centrifugal force affects the composition of the alloy. The higher the temperature, the amount of oxide that is generated many.

티타늄 합금 폐기물의 연소 특성에 관한 실험적 연구 (Experimental study on the combustion characteristics of titanium alloy)

  • 이준식;남기훈
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.105-110
    • /
    • 2019
  • Most titanium alloy waste with cutting oil was discarded without recycling process so that it can be caused by metal and oil fires. However, there is no fire management system and studies on the titanium or titanium alloy waste in spite of high fire risk. The purpose of this experimental study is to identify the fire risk of the titanium alloy waste with cutting oil. We collected the 120g waste which was made in the biomedical titanium alloy cutting process. The waste was burned and conducted thermal image analysis with infrared camera. The experimental results which illustrated the process, characteristics, and trends of fire are presented. Firstly, the cutting oil was burned and partially the titanium alloy waste was burned. The maximum temperature of the fire was more than $650^{\circ}C$ in some specific spots. These results means when a lot of titanium alloy waste with cutting oil was ignited, this fire could connect the titanium fire. In other words, the fire has a flammable liquid fire and combustible metal fire at the same time. The experimental study could be used fire prevention, response, and investigation of the titanium alloy waste.

액상소결삽입재를 이용한 천이액상접합에 관한 연구 (Transient Liquid Phase Bonding with Liquid Phase Sintered Insert Metals)

  • 권영순;석명진;김지순;김환태;문진수
    • 한국분말재료학회지
    • /
    • 제8권4호
    • /
    • pp.258-267
    • /
    • 2001
  • In this work, the conventional transient liquid phase(TLP) bonding was modified. An attempt was made of using a liquid phase sintered alloy, which will be a liquid phase coexisting with a solid phase at the bonding temperature, as an interlayer for bonding metals. With an aim of revealing the fundamental features of this modified TLP bonding, the kinetics concerned with the growth of solid particles and the isothermal solidification process in Fe-1.16wt%B and Fe-4.5wt%P interlayers for the bonding pure iron, as well as the morphological change of the solid particle, were investigated.

  • PDF

Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder

  • Lee, Hyun-Kwuon
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.215-220
    • /
    • 2015
  • The effect of Al content on the processing of reaction-bonded $Al_2O_3$ (RBAO) ceramics using 40v/o ~ 80v/o Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processes that use ~ 40v/o pure Al powder. The influence of high Al content in starting $Al_2O_3$-Al alloy powder mixtures on its particulate characteristics, reaction-bonding, microstructure, physical and mechanical properties was revealed. Starting $Al_2O_3$-Al alloy powder mixtures with 40v/o ~ 80v/o Al alloy powder were milled, reaction-bonded, post-sintered, and characterized. With an increasing Al alloy content, the milling efficiency of Al alloy powder was lowered, resulting in a larger particle size after milling. However, in spite of the larger particle size of Al alloy powder, the oxidation, i.e., reaction-bonding, of the Al alloy was successfully completed via solid and liquid state oxidation, in which the activation energy of the oxidation was nearly the same regardless of Al alloy content. After reaction-bonding and post-sintering at $1600^{\circ}C$, RBAO ceramics from 80v/o Al alloy content showed a relative density of ~97% and a flexural strength of 251 MPa compared to ~ 96% and 353 MPa for RBAO ceramics from 40v/o Al alloy content, respectively. The lower flexural strength at 80v/o Al alloy content was due to the weak spinel phase that formed from Zn, Mg alloying elements in Al.

급속응고된 Al-Pb-Cu-Mg 합금의 마모특성에 미치는 미세조직의 영향 (Effect of the Microstructrure of Rapidly Solidified Al-Pb-Cu-Mg on the Wear ProPerty)

  • 김홍물
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.12-18
    • /
    • 2000
  • Effects of the microstrucrure of rapidy solidified Al-Pb-Cu-Mg alloys on the wear investigated. In order to overcome the miscility gap between Al and pb under equilibrium conditions, both in the solid and the liquid states, the alloy were rapidy solidifies to produce them in a segregation-free condition. Although the Pb particles showed relatively fine dispersion in the Al matrix in all the alloys by this process. the Al-16Pb alloy was found to have the most favorable microstructure with discretre with discrete Pb particles of abount 0.5 ${\mu}$m in size. With the addition of Cu and Cu-Mg to Al-16Pb, cellular structures were newly formed; not seen in the binary Al-Pb alloy. Wear properties of the Al-Pb binary alloys measured as a function of the sliding speen, sliding distance, and applied load showed that the Al-16Pb alloy has the best wear resistance, as expected from the fine microstructural features in this alloy. The were resistance of the alloy containing Cu-and Cu-Mg was higher than that of the Al-16Pvb alloy, due to matrix strengthening by precipitation hardeing. The wear mechanism was identified by examining the traces and wear debris.

  • PDF

Zr-Al-Cu-Ni계 합금의 비정질형성능에 미치는 Pd과 Ag 복합첨가의 영향 (The Influence of (Pd+Ag) Additions on the Glass Forming Ability of Zr-Al-Cu-Ni based Alloys)

  • 김미혜;이병우;김성규;배차헌;정해용
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.40-44
    • /
    • 2004
  • The influence of Pd and Ag additions on the thermal stability, the glass forming ability (GFA) and mechanical property of $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_{(5-x)}Ag_x$ (x = $0{\sim}5at%$) alloys obtained by melt spun and injection casting method have been investigated by using of X-ray diffraction, thermal analysis (DTA, DSC) and micro-Vickers hardness(Hv) testing. The thermal properties of melt-spun $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_{(5-x)}Ag_x$ (x = $0{\sim}5at%$) alloys exhibit a supercooled liquid region(${\Delta}T_x$) exceeding 91 K before crystallization. The largest ${\Delta}T_x$ reaches as large as 126 K for the $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_5$ alloy. The reduced glass transition temperature, $T_{rg}$ increased with increasing Ag content. The largest $T_{rg}$ is obtained for the $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ alloy. The $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ bulk amorphous alloy rod with 3 mm in diameter was fabricated by injection casting. Hv increased with increasing Ag content and the largest value was obtained for the $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ bulk amorphous alloy.

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 1. 합금 wire의 직경 및 인가 전압의 영향 (Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part I. Effect of Wire Diameter and Applied Voltage)

  • 류호진;이용희;손광욱;공영민;김진천;김병기;윤중열
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.105-111
    • /
    • 2011
  • This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.

Fe-Cu계 소결합금의 이상팽창에 관한 연구 (I) (A Study on Abnormal Expansion of Fe-Cu Sintered Alloy)

  • 송영준;김윤채
    • 한국분말재료학회지
    • /
    • 제11권5호
    • /
    • pp.383-390
    • /
    • 2004
  • In order to investigate behavior of abnormal expansion of the iron-copper compacts, we compared the dilatometric curves of the compacts which mixed the copper powder to the iron powder with those of compacts which mixed the copper powder to the iron-copper alloy powder. The dilatometric curves were obtained below the sintering conditions, which heated up to 115$0^{\circ}C$ by a heating rate of 1$0^{\circ}C$/min, held for 60min at 115$0^{\circ}C$ and cooled down at a rate of 2$0^{\circ}C$/min to room temperature. The dilatometric curves of the compacts showed the different expansion behavior at temperatures above the copper melting point in spite of same chemical composition. All of the compacts of former case showed large expansion, but all of the compacts in latter case showed large contraction. The microstructures of sintered compacts also showed the different progress in alloying of the copper into the iron powder. Namely we could observe the segregation at alloy part of copper into iron powder in case of the sintered compacts, which mixed the copper powder to the iron powder, but could not observe the segregation in compacts which mixed the copper powder to the iron-copper alloy powder. But the penetration of liquid copper into the interstices between solid particles was occurred at both cases. Therefore, the showing of the different dimensional changes in the compacts in spite of same chemical composition is due to more the alloying of copper into iron powder than the penetration of liquid copper into the interstices between solid particles.

마그네슘환원에 의한 지르코늄-티타늄 합금분말 합성 (Synthesis of Zr-Ti Alloy Powder by Magnesium Reduction)

  • 이동원;박근태;임태수;이혜문;유지훈
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.359-364
    • /
    • 2011
  • Zr-Ti alloy powders were successfully synthesized by magnesium thermal reduction of metal chlorides. The evaporated and mixed gasses of $ZrCl_4+TiCl_4$ were injected to liquid magnesium and the chloride components were reduced by magnesium leading to the formation of $MgCl_2$. The released Zr and Ti atoms were then condensed to particle forms inside the mixture of liquid magnesium and magnesium chloride, which could be dissolved fully in post process by 1~5% HCl solution at room temperature. By the fraction-control of individually injected $ZrCl_4$ and $TiCl_4$ gasses, the final compositions of produced alloy powders were changed in the ranges of Zr-0 wt.%~20 wt.%Ti and their purity and particle size were about 99.4% and the level of several micrometers, respectively.