• Title/Summary/Keyword: liquid $SiO_2$

Search Result 346, Processing Time 0.032 seconds

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films (Pt 촉매 박막을 이용한 비정질 SiOx 나노기둥의 수직성장)

  • Lee, Jee-Eon;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.699-704
    • /
    • 2018
  • One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.

Microstructure and Thermal Shock Properties of SiC Materials (SiC 재료의 미세조직 및 열충격 특성)

  • Lee, Sang-Pill;Cho, Kyung-Seo;Lee, Hyun-Uk;Son, In-Soo;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2011
  • The thermal shock properties of SiC materials were investigated for high temperature applications. In particular, the effect of thermal shock temperature on the flexural strength of SiC materials was evaluated, in conjunction with a detailed analysis of their microstructures. The efficiency of a nondestructive technique using ultrasonic waves was also examined for the characterization of SiC materials suffering from a cyclic thermal shock history. SiC materials were fabricated by a liquid phase sintering process (LPS) associated with hot pressing, using a commercial submicron SiC powder. In the materials, a complex mixture of $Al_2O_3$ and $Y_2O_3$ powders was used as a sintering additive for the densification of the microstructure. Both the microstructure and mechanical properties of the sintered SiC materials were investigated using SEM, XRD, and a three point bending test. The SiC materials had a high density of about 3.12 Mg/m3 and an excellent flexural strength of about 700 MPa, accompanying the creation of a secondary phase in the microstructure. The SiC materials exhibited a rapid propagation of cracks with an increase in the thermal shock temperature. The flexural strength of the SiC materials was greatly decreased at thermal shock temperatures higher than $700^{\circ}C$, due to the creation of microcracks and their propagation. In addition, the SiC materials had a clear tendency for a variation in the attenuation coefficient in ultrasonic waves with an increase in thermal shock cycles.

Mechanism of $3CaO.SiO_2$ Prevention in Presence of Excess $SO_3$ (과량의 $SO_3$가 존재할 때 $3CaO.SiO_2$의 생성 저하 메카니즘)

  • 정해문;한기성;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.527-534
    • /
    • 1993
  • The phenomena that excess sulfate hindred the C3S formation in the presence of clinker liquid phase were investigated. In the case of (NH4)2SO4, assuming SO3 atmospheric condition, sulfate stabilized C2S and was enriched at the surface of C2S grains, so C2S was prevented from being dissolved into clinker melt. CaSO4 showed the similar aspect with (NH4)2SO4, however, the prevention of C3S formation by CaSO4 took more influence that C2AS and C4A3 were formed below 100$0^{\circ}C$, and remained upto clinkering temperature, 145$0^{\circ}C$, thus these intermediate phases caught CaO which would participate the C3S formation.

  • PDF

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Properties Variation of Ta2O5 Film during the Atomic Layer Deposition

  • Lee, Seung Youb;Jeon, Cheolho;Jung, Woosung;Kim, Yooseok;Kim, Seok Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.283.2-283.2
    • /
    • 2013
  • The variation of chemical and interfacial state during the growth of Ta2O5 films on the Si substrate by atomic layer deposition (ALD) was investigated using in-situ synchrotron radiation photoemission spectroscopy. A newly synthesized liquid precursor Ta(NtBu)(dmamp)2Me was used as the metal precursor, with Ar as a purging gas and H2O as the oxidant source. The core-level spectra of Si 2p, Ta 4f, and O 1s revealed that Ta suboxide and Si dioxide were formed at the initial stages of Ta2O5 growth. However, the Ta suboxide states almost disappeared as the ALD cycles progressed. Consequently, the Ta5+ state, which corresponds with the stoichiometric Ta2O5, only appeared after 4.0 cycles. Additionally, tantalum silicate was not detected at the interfacial states between Ta2O5 and Si. The measured valence band offset value between Ta2O5 and the Si substrate was 3.08 eV after 2.5 cycles.

  • PDF

Quasi-Solid-State Hybrid Electrolytes for Electrochemical Hydrogen Gas Sensor

  • Kim, Sang-Hyung;Han, Dong-Kwan;Hong, SeungBo;Jeong, Bo Ra;Park, Bok-Seong;Han, Sang-Do;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.294-301
    • /
    • 2019
  • The quasi-solid-state hybrid electrolytes were synthesized by chemical cross-linking reaction of methacrylate-functionalized $SiO_2$ ($MA-SiO_2$) and tetra (ethylene glycol) diacrylate in aqueous electrolyte. A quasi-solid-state electrolyte synthesized by 6 wt.% $MA-SiO_2$ exhibited a high ionic conductivity of $177mS\;cm^{-1}$ at room temperature. The electrochemical $H_2$ sensor assembled with quasi-solid-state electrolyte showed relatively fast response and high sensitivity for hydrogen gas at ambient temperature, and exhibited better durability and stability than the liquid electrolyte-based sensor. The simple construction of the sensor and its sensing characteristics make the quasi-solid-state hydrogen sensor promising for practical application.

Studies on Preparation of Boron Compounds from Colemanite Ore : Preparation of Boric Acid and Reaction Mechanism (I) (Colemanite 광물로부터 붕소화합물의 제조에 관한 연구 : 붕산제조 및 반응기구 (I))

  • Choi, Byung-Hyun;Lim, Hyung-Mi;Jee, Mi-Jung;Jang, Jae-Hun;Paik, Song-Hoo;Lee, Mi-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.756-765
    • /
    • 2004
  • We present extraction process and reaction mechanism of boric acid from one of calcium borate ores, colemanite by reaction with sulfuric acid. Colemanite has been fully decomposed under pH 5 with sufficiency amount of sulfuric acid, more than the amount stoichiometrically required. Calcium sulfate was separated out, leaving boron in the liquid phase after sulfuric acid addition. The extraction process of boric acid was affected by dissolution temperature and time, amount of sulfuric acid and ammonium sulfate, pH and a degree of concentration before recrystallization. The $SiO_2$ of the impurities which colemanite contains was insoluble so that it was separated out with calcium sulfate from liquid phase. The species of $CaO,\;Al_2O_3,\;Fe_2O_3,\;MgO$ were remained in a liquid phase after reaction with sulfuric acid. These impurities were separated out by addition of ammonia to the liquid phase, funhermore, boric acid was produced by process of pH adjustments and acidification, concentration, and recrystallization.

Effects of Composition and Temperature on the Descaling Characteristics in Si Containing Steel (Si 첨가강의 Descaling 특성에 미치는 강조성 및 가열온도의 영향)

  • Choi J. W.;Kwon S. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.277-284
    • /
    • 2004
  • Low carbon steels containing Si of up to $1.2\;wt\%$ were oxidized in air at 1373 K and 1523 K, i.e. below and above the eutectic temperature of FeO and $Fe_2SiO_4$. The influence of a impurity element, S on behavior of scale formation during oxidation was investigated by using $M\"{o}chssbauer$ spectroscopy and EDS. This allowed establishment of an interface oxidation model of Si-added steel depending on temperature and an impurity element. A compound of FeO and FeS was formed in the scale/matrix interface of low carbon steels containing S of up to $0.03\;wt\%$ oxidized above 1213 K of the eutectic temperature. This was flat formed between $Fe_2SiO_4$ nodules along the scale/matrix interface without selective oxidation. It is due to low viscosity and high wettability of the compound of FeO and FeS in liquid. Conventional metallographic examinations revealed that roughness of the scale/matrix interface in Si-added steels became flat as the content of S increased. It was independent of oxidizing temperature and Si content. Effects of oxidizing temperature and an impurity element content on descaling characteristics in Si-added steels were evaluated by using a hydraulic descaling simulator. Good descaling characteristics was attributable to this flatness of the scale/matrix interface.

  • PDF

The High Density Sintering of Green-emitting β-SiAlON:Eu Ceramic Plate Phosphor (녹색발광 β-SiAlON:Eu 세라믹 플레이트 형광체의 치밀화 소결)

  • Park, Young-Jo;Lee, Sung-Hoon;Jang, Wook-Kyung;Yoon, Chang-Bun;Yoon, Chul-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.503-508
    • /
    • 2010
  • $Eu^{2+}$-doped $\beta$-SiAlONs ($Si_{6-z}Al_zO_zN_{8-z}:Eu_y$) are recognized as promising phosphor materials to build an white LED for lighting application due to its excellent absorption/emission efficiency in the long wave length region. In this research, the fabrication of $\beta$-SiAlON:Eu plate phosphor by sintering was investigated with fixed Eu content(y) and varied composition of the host lattice(z). The addition of the activator $Eu_2O_3$ lead to enhanced densification by forming the transient liquid phase. The refinement of a composition by the calculated lattice parameter indicated that the measured composition of the fabricated specimens is nearly same to that of designed one. The single phase $\beta$-SiAlON:Eu plate with relative density of 96.4% was achieved by addition of 2 wt% CaO, which implies the possibility of full densification by adjusting the processing variables.

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Atomic Layer Deposition of $Ta_2O_5$ film on Si Substrate with Ta(NtBu)(dmamp)$_2Me$ and $H_2O$

  • Lee, Seung Youb;Jung, Woosung;Kim, Yooseok;Kim, Seok Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.619-619
    • /
    • 2013
  • The interfacial state between $Ta_2O_5$ and a Si substrate during the growth of $Ta_2O_5$ films by atomic layer deposition (ALD) was investigated using in-situ synchrotron radiation photoemission spectroscopy (SRPES). A newly synthesized liquid precursor Ta($N^tBu$) $(dmamp)_2Me$ was used as the metal precursor, with Ar as a purging gas and $H_2O$ as the oxidant source. After each half reaction cycle, samples were analyzed using in-situ SRPES under ultrahigh vacuum at room temperature. SRPES analysis revealed that Ta suboxide and Si dioxide were formed at the initial stages of $Ta_2O_5$ growth. However, the Ta suboxide states almostdisappeared as the ALD cycles progressed. Consequently, the $Ta^{5+}$ state, which corresponds with the stoichiometric $Ta_2O_5$, only appeared after 4.0 cycles. Additionally, tantalum silicate was not detected at the interfacial states between $Ta_2O_5$ and Si. The measured valence band offset between $Ta_2O_5$ and the Si substrate was 3.22 eV after 3.0 cycles.

  • PDF

A Dry-patterned Cu(Mg) Alloy Film as a Gate Electrode in a Thin Film Transistor Liquid Crystal Displays (TFT- LCDs) (TFT-LCDs 게이트 전극에 적용한 Cu(Mg) 합금 박막의 건식식각)

  • Yang Heejung;Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The annealing of a Cu(4.5at.% Mg)/$SiO_2$/Si structure in ambient $O_2$, at 10 mTorr, and $300-500^{\circ}C$, allows for the outdiffusion of the Mg to the Cu surface, forming a thin MgO (15 nm) layer on the surface. The surface MgO layer was patterned, and successfully served as a hard mask, for the subsequent dry etching of the underlying Mg-depleted Cu films using an $O_2$ plasma and hexafluoroacetylacetone [H(hfac)] chemistry. The resultant MgO/Cu structure, with a taper slope of about $30^{\circ}C$ shows the feasibility of the dry etching of Cu(Mg) alloy films using a surface MgO mask scheme. A dry-etched Cu(4.5at.% Mg) gate a-Si:H TFT has a field effect mobility of 0.86 $\textrm{cm}^2$/Vs, a subthreshold swing of 1.08 V/dec, and a threshold voltage of 5.7 V. A novel process for the dry etching of Cu(Mg) alloy films, which eliminates the use of a hard mask, such as Ti, and results in a reduction in the process steps is reported for the first time in this work.