• Title/Summary/Keyword: lipid degradation

Search Result 173, Processing Time 0.029 seconds

Quality Characteristics of Seasoned Pork Meat Added with the Sauce of Pine Needle Extract during Storage (솔잎 열수추출물 소스를 첨가한 양념돈육의 저장 중 품질 특성)

  • Kim, Ha-Yun;Hwang, In-Guk;Shin, Young-Ji;Kim, Seok-Young;Hwang, Young;Yoo, Seon-Mi
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.5
    • /
    • pp.593-603
    • /
    • 2012
  • This study was carried out to investigate the effects of pine needle extract on the color, hardness, springiness, chewiness, pH, thiobarbituric acid reactive substances (TBARS) value, and total bacterial number of seasoned pork meat stored at $4^{\circ}C$ for 9 days. The pH levels of sauce samples were not affected by the mixing rate of the extracts. Acidity, soluble solids, and salinity gradually increased as the amount of added extract increased. Total polyphenolic contents in the sauce ranged from $1.01{\pm}0.02$ mg GAE/mL to $1.41{\pm}0.04$ mg GAE/mL, DPPH radical scavenging activity ranged from $0.06{\pm}0.01$ AEAC to $0.12{\pm}0.01$ AEAC, and ABTS radical scavenging activity ranged from $0.11{\pm}0.01$ AEAC to $0.19{\pm}0.01$ AEAC. The pH levels significantly decreased as the amount of added extract increased. The lightness ($L^*$), redness ($a^*$) and yellowness ($b^*$) values of meat tended to decrease with longer storage period (p<0.05). Hardness and chewiness also increased with longer storage period (p<0.05). The TBARS values decreased as the amount of added extract increased after 6 days (p<0.05). Total bacterial numbers of P5, P10, and P15 decreased compared to the control (p<0.05). In the sensory evaluation, taste and palatability were not significantly different among C, P5, and P10 (p<0.05). Further, flavor, color, tenderness, and juiciness were not different among the seasoned pork meats. These results suggest that pine needle extract can inhibit protein degradation, lipid oxidation, and bacterial growth when used as an additive to seasoned pork meat.

Effects of a Dietary Chitosan-Alginate-Fe(II) Complex on Meat Quality of Pig Longissimus Muscle during Ageing

  • Park, B.Y.;Kim, J.H.;Cho, S.H.;Hwang, I.H.;Jung, O.S.;Kim, Y.K.;Lee, J.M.;Yun, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.414-419
    • /
    • 2005
  • The current study was conducted to investigate the effects of dietary chitosan-alginate-Fe(II) complex (CAFC) supplementation on carcass and meat qualities of pig m. longissimus during chiller ageing. One hundred and twenty-two LYD (Landrace${\times}$Yorkshire${\times}$Duroc) pigs were sampled from an industrial population. Seventy-four pigs (32 gilts and 42 barrows) were administered 3 ml of dietary supplementation of CAFC per day from 25 to 70 days of age, while the remaining 48 pigs (20 gilts and 28 barrows) were fed the same commercial feeding regime without the supplementation. For assessing the dietary effects on pH, objective meat color, cooking loss, water-holding capacity (WHC), thiobarbituric acid reactive substances (TBARS), volatile basic nitrogen (VBN) and fatty acid composition during ageing, 20 barrows (10 of each treatment) were randomly sampled, and aged for 3, 7, 12, 16, 20 and 25 days in a $1^{\circ}C$ chiller. The results showed that CAFC-fed pigs required approximately 10 fewer feeding days than the control group. Furthermore, the treatment resulted in greatly higher carcass grade whereby the grade A was increased by approximately 35% and 7% for gilts and barrows, respectively. The treatment had no significant effect (p>0.05) on pH, meat color and WHC during ageing. On the other hand, the CAFC-fed pigs showed significantly (p<0.05) lower TBARS values from 20 days of storage. In addition, the sum of unsaturated fatty acids for the treated group was significantly (p<0.05) higher than that for the control group after the storage time. This implied that CAFC supplementation could reduce the formation of free radicals in fatty acids (i.e., lipid oxidation). The treatment also significantly (p<0.05) retarded VBN formation during ageing, indicating a significant reduction in protein degradation. However, as there was no difference in pH between the two groups, the result raised a possibility that antibacterial activity of the CAFC alone could cause reduction in the formation of TBARS and VBN. In this regard, although the treatment effectively slowed down the formation of TBARS and TBA during chiller ageing, it was not resolved whether that was associated with the direct effect of the antioxidant function of chitosan and/or alginate, or a consequence of their antibacterial functions.

Prostaglandin E2 Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

  • Shehzad, Adeeb;Islam, Salman Ul;Lee, Jaetae;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.899-906
    • /
    • 2014
  • Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

The Transformation of Saponin Platycodi Radix by Aspergillus niger and Anti-oxidation Evaluation of the Transformed Metabolites (Aspergillus niger 효소에 의한 길경 사포닌(플라티코딘)의 전환 및 항산화 활성 비교)

  • Kang, Ju-Hui;Ji, Gnu-Uk;Wui, Hye-Jung;Hwang, In-Kyeung
    • Korean journal of food and cookery science
    • /
    • v.24 no.6
    • /
    • pp.729-734
    • /
    • 2008
  • The principal objective of this study was to assess the possibility of transforming platycodin glycosides using various strains of probiotic bateria and edible fungi. Among the experimental microorganisms assess herein, Aspergillus niger KCTC 6909 evidenced the highest level of platycodin glycoside hydrolysis during fermentation. Particularly in cases in which the organism was incubated in the presence of rhamnose and platycodins. In order to produce the enzyme from Aspergillus niger effectively, various incubation conditions were assessd in order to determine the optimal conditions. The cytotoxicity on V79-4 (Chinese- hamster lung fibroblasts, normal cells) of platycodin was reduced significantly after conversion (concentration on $500{\mu}g/mL$, $1000{\mu}g/mL$); DPPH radical scavenging activity before conversion was 35.05%, and was 57.44% afterward. We noted significantly higher conversion activity inhibiting oxidative degradation. In conclusion, these results indicate that the proper combination of food microorganisms -and fermentation conditions can result in an increase in the glycoside hydrolysis of platycodin the resultant products of which reduce cytotoxicity- and increase anti-oxidant activity.

2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells

  • Mustafa, Ebtihal H;Mahmoud, Huda T;Al-Hudhud, Mariam Y;Abdalla, Maher Y;Ahmad, Iman M;Yasin, Salem R;Elkarmi, Ali Z;Tahtamouni, Lubna H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3213-3222
    • /
    • 2015
  • Background: Cancer metastasis depends on cell motility which is driven by cycles of actin polymerization and depolymerization. Reactive oxygen species (ROS) and metabolic oxidative stress have long been associated with cancer. ROS play a vital role in regulating actin dynamics that are sensitive to oxidative modification. The current work aimed at studying the effects of sub-lethal metabolic oxidative stress on actin cytoskeleton, focal adhesion and cell migration. Materials and Methods: T47D human breast cancer cells were treated with 2-deoxy-D-glucose (2DG), L-buthionine sulfoximine (BSO), or doxorubicin (DOX), individually or in combination, and changes in intracellular total glutathione and malondialdehyde (MDA) levels were measured. The expression of three major antioxidant enzymes was studied by immunoblotting, and cells were stained with fluorescent-phalloidin to evaluate changes in F-actin organization. In addition, cell adhesion and degradation ability were measured. Cell migration was studied using wound healing and transwell migration assays. Results: Our results show that treating T47D human breast cancer cells with drug combinations (2DG/BSO, 2DG/DOX, or BSO/DOX) decreased intracellular total glutathione and increased oxidized glutathione, lipid peroxidation, and cytotoxicity. In addition, the drug combinations caused a reduction in cell area and mitotic index, prophase arrest and a decreased ability to form invadopodia. The formation of F-actin aggregates was increased in treated T47D cells. Moreover, combination therapy reduced cell adhesion and the rate of cell migration. Conclusions: Our results suggest that exposure of T47D breast cancer cells to combination therapy reduces cell migration via effects on metabolic oxidative stress.

The Effects of Hantaan Virus on the Expression of Platelet Activating Factor Receptor and on the Activity of Platelet Activating Factor Acetylhydrolase (한탄바이러스가 혈소판활성인자 수용체 발현 및 혈소판활성인자 분해효소 활성에 미치는 영향)

  • Hwang, Ji-Young;Park, Jong-Won;Hong, Sae-Yong;Park, Ho-Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Background : The central physiological derangement of hemorrhagic fever with renal syndrome (HFRS) caused by hantaan virus (HTNV) is a vascular dysfunction, manifested by hemorrhage, impaired vascular tone and increased vascular permeability. Platelet activating factor (PAF), whose actions are mediated through a specific receptor, is a potent bioactive lipid. PAF has diverse biological functions in the vascular system, such as increasing vascular permeability, adhesion of leukocytes to the endothelium and reduction of cardiac output, which result in hypotension and shock. The goal of the present study was to investigate whether PAF is involved in the pathogenesis of HFRS. For this purpose, we evaluated the effect of HTNV on the expression of PAF receptor (PAF-R) and on the activity of PAF-acetylhydrolase (PAF-AH) instead of PAF because PAF is rapidly degraded by PAF-AH in vivo. Materials and methods : To evaluate the expression of PAF-R, we performed reverse-transcription PCR, western blot and FACS analyses using HTNV-infected human umbilical vein endothelial cells (HUVECs) and non-infected (control) HUVECs. In addition, we measured the activity of plasma PAF-AH in HFRS patients and normal healthy persons. Results : The mRNA and protein expression of PAF-R was increased in HTNV-infected HUVECs compared with control HUVECs at 2 and 3 days post-infection (d.p.i.). FACS analysis showed that HTNV induced the surface expression of PAF-R in HUVECs from 2 d.p.i. The activity of plasma PAF-AH was 2.5-fold lower in HFRS patients than in normal healthy persons. Conclusion : Increased PAF-R expression by HTNV might increase the responsiveness to PAF in endothelial cells. Reduced PAF-AH activity in the blood of HFRS patients might delay PAF degradation. These results suggest that changes in PAF-R and PAF-AH by HTNV might influence to PAF activity and might be involved in the vascular dysfunction of HFRS.

  • PDF

Enzymatic Production and Adipocyte Differentiation Inhibition of Low-Molecular-Weight-Alginate (저분자 알긴산의 효소적 생산과 지방세포 분화 억제 효과)

  • Park, Mi-Ji;Kim, Yeon-Hee;Kim, Gun-Do;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1393-1398
    • /
    • 2015
  • In this study, we investigated the extraction condition of alginate from Laminaria japonica, the enzymatic degradation of the extracted alginate, and the inhibitory activity of the degraded alginate on the differentiation of 3T3-L1 preadipocytes. The optimal conditions for the efficient extraction, precipitation, and recovery of alginate from the brown seaweed L. japonica were 1% for Na2CO3 concentration, 80℃ for extraction temperature, and ethanol for precipitation solvent. In the enzymatic reaction for the production of low-molecular-weight alginate (LMWA) by using alginate lyase from Flavobacterium sp., the initial concentration of Laminaria alginate was 3%. The low-molecular-weight degree from alginate was independent with the enzyme concentration, and the optimal concentration of alginate lyase was found to be 5 unit/ml. Through the enzymatic reaction with 5 unit/ml of alginate lyase at 37℃ for 3 hr, the viscosity and molecular weight of LMWA were 4.5 cp and 307 kDa, respectively. Treatment with LMWA significantly suppressed the accumulation of lipid droplet and triglyceride in 3T3-L1 preadipocytes with a dose-dependent manner. Therefore, it seems that LMWA treatment could inhibit the differentiation of 3T3-L1 preadipocytes. These results indicate that LMWA or the degraded alginate produced by alginate lyase enzyme can be useful for the development of anti-obesity biosubstances.

Physicochemical and Sensory Evaluation of Cured and Short-Ripened Raw Hams During Storage at 10 and 25°C (단기 숙성 생햄의 저온 및 실온저장 과정 중 물리화학 및 관능학적 품질 특성 변화)

  • Lee, Keun-Taik;Lee, Youn-Kyu;Lee, Jung-Pyo;Lee, Jung-Woo;Son, Se-Kwang
    • Food Science of Animal Resources
    • /
    • v.27 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • Twenty pork loins were processed for manufacturing raw hams according to a short-ripening procedure including dry-and wet-curing for 1 week each, followed by ripening for 2 weeks. Raw ham cuts were vacuum-packaged and stored in darkness at 10 and $25^{\circ}C$ for 90 days, and their physicochemical and sensory quality characteristics were investigated. The sodium chloride content of raw hams stored at 10 and $25^{\circ}C$ was maintained at approximately 5.1% throughout storage at either temperature. No significant changes in water, crude protein, crude fat and ash contents were observed in all samples regardless of storage temperature and storage length. Thiobarbituric acid and volatile basic nitrogen values increased continuously during the storage period. The changes in physicochemical characteristics including pH, water activity texture lipid oxidation and protein degradation, and sensory attributes appeared to be more pronounced at $25^{\circ}C$ than at $10^{\circ}C$ over the storage period. At prolonged storage periods, a significant quality loss in the aspect of texture changes including hardness, brittleness, elasticity, cohesiveness, gumminess, and adhesiveness was observed (p<0.05). Based on sensory evaluation scores, It appeared that vacuum-packaged raw ham cuts stored at 10 and $25^{\circ}C$ were not acceptable after 75 and 45 days, respectively.

Lipid Degradation of Beef Stew with and without Vegetables (소고기 Stew에 야채첨가가 지방분해에 미치는 영향)

  • Han, Myung-J.;Melton, Sharon L.
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.503-508
    • /
    • 1990
  • Stews were prepared by 2 processes and 4 treatments, and stored for 3 different storage periods. The two processes were beef cooked in a stew and stored in a polyethylene container at $5^{\circ}C(P1)$ and in a barrier bag at $0^{\circ}C(P2)$. The four treatments were beef cooked alone (T1), with onions (T2), with carrots (T3) and with onions and carrots (T4). Stews in P1 were stored for 0, 2 and 4 days and stews in P2 were stored for 0, 2 and 4weeks. Cooking decreased the cephalin content by 39%. the lecithin content by 21% and most of the prolipid fatty acid concentrations as well as the fatty aldehyde levels in the phospholipids of beef from stew. Process or storage did not significantly affect the level of either phospholipids. however cooking beef with carrots seemed to exhibit some protection against hydrolysis of cephalin. P1 stews had a higher TBA-value (p<0.05) than P2 stews, and the TBA-value of P1 stews increased linearly during 4 days storage. The TBA-value was not affected (p<0.05) by treatment for any of the stews and did not change significantly during 4 weeks storage in P2 stews.

  • PDF

Effect of Inhibitions of Ginkgo biloba Extracts on Induction of Reactive Oxygen Species and Release of Inflammation Mediator Arachidonic Acid from U937 (U937을 이용한 활성산소 유도와 염증관련 아라키돈산 유리에 있어 은행잎 엑스의 억제 효과)

  • Kang, Sang-Mo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1198-1205
    • /
    • 2000
  • Effect of inhibitions of three kinds of Ginkgo biloba extracts(Ginkgo biloba extract, Ginkgolide A, and Ginkgolide B) on induction of reactive oxygen species and release of inflammation mediator arachidonic acid were tested. Three kinds of Ginkgo biloba extracts could not inhibit the pyrogallol auto-oxidation, but they showed the hydrogen atom donating activity in DPPH assay. When 10 ${\mu}M$ hydrogen peroxide and 400 ${\mu}g/mL$ of three kinds of Ginkgo biloba extracts were added to U937 monocytic macrophage, the induction of lipid peroxidation was not observed. The Ginkgo biloba extract showed the most powerful inhibition among the extracts. And only Ginkgolide A was good for the inhibition of the protein degradation. The release of inflammation mediator arachidonic acid was induced by adding TPA and calcimycin to U937. In this assay, even 10 ${\mu}g/mL$ of three different Ginkgo biloba extracts excellently blocked the release of arachidonic acid. Particularly, the inhibition efficiency of Ginkgolide B was about 11 times higher than that of induction, and was about 4 times higher than that of the control of noninduction. This result suggests that the release of arachidonic acid is not inhibited by the antioxidant activity of Ginkgo biloba extracts, but a pre-step of the release of arachidoinc acid is inhibited by Ginkgo biloba extracts.

  • PDF