• 제목/요약/키워드: lipases

검색결과 118건 처리시간 0.19초

Statistical patterns of lipase activities on the release of short-chain fatty acids in Cheddar cheese slurries

  • Kwak, Hae-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.6-19
    • /
    • 1989
  • Twenty-five commercial food grade and alalytical grade lipases were used to study the patterns of release of short-chain free fatty acids (FFA) from milk fat in cheese slurries. Principal component Analysis showed that there were four distinctive groups by the FFA ratios and five groups by the FFA concentrations. However, Average Linkage Cluster Analysis showed that the patterns of FFA released were dependent upon distance defined between groups of lipases. All the lipases tested with both statistical analysis had distinctive specificities in hydrolyzing short-chain FFA from milk fat. Lipases from ruminant-animal origins produced an extremely high ratio (>40%) of butyric acid and a low ratio (<26%) of capric acid to total short chain FFA. Lipases from porcinepancreas and some microbial origins showed balanced production in both bytyric and capric acid. However, most lipases from microbial origins released a high ratio of capric acid but similar ratios to other origin enzymes for short-chain free fatty acids. Ruminant-animal origin lipases produced short-chain FFA much higher in concentration than other lipases. Lipases from porcine pancreas as well as microbial origins showed different concentrations of the fatty acids. Ratios of short-chain FFA in each sample were not significantly changed during incubation periods (4 wk), whereas concentrations of the FFA increased considerably.

  • PDF

Skin Commensal Fungus Malassezia and Its Lipases

  • Park, Minji;Park, Sungmin;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.637-644
    • /
    • 2021
  • Malassezia is the most abundant genus in the fungal microflora found on human skin, and it is associated with various skin diseases. Among the 18 different species of Malassezia that have been identified to date, M. restricta and M. globosa are the most predominant fungal species found on human skin. Several studies have suggested a possible link between Malassezia and skin disorders. However, our knowledge on the physiology and pathogenesis of Malassezia in human body is still limited. Malassezia is unable to synthesize fatty acids; hence, it uptakes external fatty acids as a nutrient source for survival, a characteristic compensated by the secretion of lipases and degradation of sebum to produce and uptake external fatty acids. Although it has been reported that the activity of secreted lipases may contribute to pathogenesis of Malassezia, majority of the data were indirect evidences; therefore, enzymes' role in the pathogenesis of Malassezia infections is still largely unknown. This review focuses on the recent advances on Malassezia in the context of an emerging interest for lipases and summarizes the existing knowledge on Malassezia, diseases associated with the fungus, and the role of the reported lipases in its physiology and pathogenesis.

유기용매 내에서 중쇄지방질의 합성

  • 권대영
    • 식품기술
    • /
    • 제7권2호
    • /
    • pp.64-73
    • /
    • 1994
  • Using 20 lipases from various microbial origins medium chain glycerides, namely, mono-, di-, and tri-carproyl glycerols from glycerol and acid were synthesized in isooctane. Enzyme reaction was performed at 0.35 M of capric acid, 0.025M of glycerol and the same mass of silica gel to remove water in 5ml of isooctane with 30mg of lyophilized lipase. Among 20 lipases, eleven lipases showed good synthetic activities, especially lipase from Pseudomonas aeruginosa (Lipase PS), Rhizomucor miehei origined lipase and Chromobacterium viscosum lipase (Lipase CV) showed good activities for production of tricaproylglycerol, while Lipase OF-360 (origined from Candida rugosa) and Lipase D (Rhizopus delemar) were good for production of dicaprolyglycerol. The lipases, especially Lipase PS, have high thermal stability at $ 60^{circ}C$, and optimum pH of lyophilization for dehydrating the lipase was pH 6.5.

  • PDF

미생물 계면활성제에 관한 연구(제3보);유기용매에서 효소를 촉매로 한 에스테르교환반응 (Enzyme-Catalyzed Transesterification Processes in Organic Solvents)

  • 김상춘;남기대
    • 한국응용과학기술학회지
    • /
    • 제9권1호
    • /
    • pp.7-13
    • /
    • 1992
  • Lipases catalyzed the transesterification reaction between esters and various primary and secondary alcohols in a 99% organic medium, porcine pancreatic, yeast, mold lipases can vigorously act as catalysts in a number of nearly anhydrous organic solvents. Various transesterification reactions catalyzed by porcine pancreatic lipase in hexane obey Michaelis-Menten kinetics. The dependence of the catalytic activity of the enzyme in organic media on the pH of the aqueous solution from which it was recovered is bell-shaped, with the maximum coinciding with the pH optimum of the enzymatic activity in water. The catalytic power exhibited by the lipases in organic solvents is comparable to that displayed in water. In addition to transesterification, lipases Can catalyze several other processes in organic media.

Isolation and Biochemical Characterization of Bacillus pumilus Lipases from the Antarctic

  • Arifin, Arild Ranlym;Kim, Soon-Ja;Yim, Joung Han;Suwanto, Antonius;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.661-667
    • /
    • 2013
  • Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be $40^{\circ}C$ and pH 9. Lipase BPL1 and lipase BPL2 were stable up to $30^{\circ}C$, whereas lipase BPL3 was stable up to $20^{\circ}C$. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward p-nitrophenyl caprylate ($C_8$). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and medium-chain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries.

Expression and Biochemical Characterization of Cold-Adapted Lipases from Antarctic Bacillus pumilus Strains

  • Litantra, Ribka;Lobionda, Stefani;Yim, Joung Han;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1221-1228
    • /
    • 2013
  • Two lipase genes (bpl1 and bpl3) from Antarctic Bacillus pumilus strains were expressed in Bacillus subtilis. Both recombinant lipases BPL1 and BPL2 were secreted to the culture medium and their activities reached 3.5 U/ml and 5.0 U/ml, respectively. Their molecular masses apparent using SDS-PAGE were 23 kDa for BPL1 and 19 kDa for BPL3. Both lipases were purified to homogeneity using ammonium sulfate precipitation and HiTrap SP FF column and Superose 12 column chromatographies. The final specific activities were estimated to be 328 U/mg for BPL1 and 310 U/mg for BPL3. Both lipases displayed an optimum temperature of $35^{\circ}C$, similar to other mesophilic enzymes. However, they maintained as much as 70% and 80% of the maximum activities at $10^{\circ}C$. Accordingly, their calculated activation energy at a temperature range of $10-35^{\circ}C$ was 5.32 kcal/mol for BPL1 and 4.26 kcal/mol for BPL3, typical of cold-adapted enzymes. The optimum pH of BPL1 and BPL3 was 8.5 and 8.0, respectively, and they were quite stable at pH 7.0-11.0, showing their strong alkaline tolerance. Both lipases had a preference toward medium chain length ($C_6-C_{10}$) fatty acid substrates. These results indicate the potential for the two Antarctic B. pumilus lipases as catalysts in bioorganic synthesis, food, and detergent industries.

유기용매 내성 리파아제와 그 이용가능성 (Solvent-tolerant Lipases and Their Potential Uses)

  • 주우홍
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1381-1392
    • /
    • 2017
  • 본 총설에서는 유기용매 내성 리파아제와 그들의 산업, 생물공학 및 환경에서의 잠재적인 영향에 대하여 서술하고자 한다. 유기용매 내성 리파아제는 유기용매 내성 세균에서 처음 보고되었으나, 많은 유기용매 내성 리파아제들이 유기용매 내성 세균 뿐만 아니라 잘 알려진 Bacillus, Pseudomonas, Streptomyce 그리고 Aspergillus sp. 균주 같은 유기용매 비내성 세균 그리고 균류 균주들에서도 보고되고 있다. 이들 리파아제들은 유기용매에서 쉽게 불활성화되지 않기 때문에 유기용매에 의한 효소 불활성화를 방지하기 위하여 별도로 그들을 고정화할 필요가 없다. 그러므로 다수의 생물공정 및 생물변환 공정에서 이용될 수 있는 잠재적인 유용성을 가지고 있다. 이들 유기용매 내성 리파아제들을 사용하면, 유기용매계 또는 비수계에서 다수의 불용성 기질들의 용해도가 증가하며, 수계에서는 불가능한 다양한 화학반응들이 일어나고, 가수분해 대신에 합성반응이 일어나며, 물에 의한 부반응이 억제되며, 화학, 위치 그리고 엔안티오(대칭) 선택성(chemo, regio and enantioselective) 변환반응의 가능성이 증가한다. 나아가 고정화하지 않아도 효소의 회수와 재이용이 가능하며, 유기용매계와 비수계에서는 리파아제의 안정성이 더 좋아지는 경향도 있다. 그러므로 유기용매 내성 리파아제는 유기용매계와 비수계를 이용한 생물변환공정에 생물촉매로써 그들을 이용가능하다는 점에서 많은 주목을 받고 있다.

Comparative Kinetic Studies of Two Staphylococcal Lipases Using the Monomolecular Film Technique

  • Sayari, Adel;Verger, Robert;Gargouri, Youssef
    • BMB Reports
    • /
    • 제34권5호
    • /
    • pp.457-462
    • /
    • 2001
  • Using the monomolecular film technique, we compared the interfacial properties of Staphylococcus simulans lipase (SSL) and Staphylococcus aureus lipase (SAL). These two enzymes act specifically on glycerides without any detectable phospholipase activity when using various phospholipids. Our results show that the maximum rate of racemic dicaprin (rac-dicaprin) hydrolysis was displayed at pH 8.5, or 6.5 with Staphylococcus simulans lipase or Staphylococcus aureus lipase, respectively The two enzymes interact strongly with egg-phosphatidyl choline (egg-PC) monomolecular films, evidenced by a critical surface pressure value of around $23\;mN{\cdot}m^{-1}$. In contrast to pancreatic lipases, $\beta$-lactoglobulin, a tensioactive protein, failed to inhibit Staphylococcus simulans lipase and Staphylococcus aureus lipase. A kinetic study on the surface pressure dependency, stereoselectivity, and regioselectivity of Staphylococcus simulans lipase and Staphylococcus aureus lipase was performed using optically pure stereoisomers of diglycerides (1,2-sn-dicaprin and 2,3-sn-dicaprin) and a prochiral isomer (1,3-sn-dicaprin) that were spread as monomolecular films at the air-water interface. Both staphylococcal lipases acted preferentially on distal carboxylic ester groups of the diglyceride isomer (1,3-sn-dicaprin). Furthermore, Staphylococcus simulans lipase was found to be markedly stereoselective for the sn-3 position of the 2,3-sn-dicaprin isomer.

  • PDF

팜유발효에 있어서 리파제의 특성과 팜유자화와의 관계 (Properties of Lipases and Palm Oil Assimilating Patterns in Palm Oil Fermentation)

  • Koh, Jeong-Sam
    • 한국미생물·생명공학회지
    • /
    • 제14권6호
    • /
    • pp.473-478
    • /
    • 1986
  • 미생물에 의한 천연유지의 분해자화과정을 극명함으로써 값싼 유지를 발효원으로서 착용하기 위하여 팜유자화성 유용균주인 Torulopsis candida Y-128과 Acinetobacter calcoaceticus KB-2가 생산하는 리파제의 특성과 이들 균주의 생리적인 특성을 검토하였다. T. candida Y-128은 팜유입자에 부착·자화하며 리파제의 작용에 의해 유리되는 분포화지방산을 포화지방산에 비해 쉽게 자화이용 함으로써 균체증식이 이루어지고 있었다. T. candida Y-128의 리파제는 대부분 균체내에 존재하는데 비해, A calcoaceticus KB-2는 배양시에 균체증식 대수기부터 균체외로 리파제가 생성됨을 알수 있었으며, 리파제에 의해 유리된 포화 지방산도 다른 균주에 비해 자화이용이 용이함을 알 수 있었다. 두 균주는 배양액중에 리파제를 축적하지 않고 균체생육에 필요한 정도를 생산하며 천연중지중 1(3-)-위치의 지방산에 작용하는 위치특이성을 나타내었다. 따라서 두 균주는 천연유지입자에 부착하여 1(3-)- 위치의 지방산을 분해하고, 분해생성물은 지방산대사경로를 거쳐 자화이용되는 것으로 보여진다.

  • PDF

갯벌로부터 분리된 미생물에 의해 생산된 지질 분해 효소의 특성 (Characterization of Lipase Produced from the Microorganisms Isolated from Mud-flat)

  • 최충식;이순열;이재학
    • 한국식품영양학회지
    • /
    • 제22권1호
    • /
    • pp.14-19
    • /
    • 2009
  • 본 연구는 산업적으로 활용할 수 있는 lipase를 개발하기 위해 갯벌에서 분리된 Gelidibacter sp. YH333와 Vibrio sp. YH339에 의해 생산되는 lipase의 특성에 대해 연구하였다. 분리 균주들로부터 세포 외로 방출하는 lipase의 양은 세포수의 증가와 비례하여 급격하게 증가하였다. 분리 균주들에 의해 생산되는 lipase는 대부분 세포 외로 lipase를 방출함으로 lipase가 세포 밖으로 constitutively하게 분비됨을 알 수 있었다. 두 균주에서 생산된 lipase 모두 p-nitrophenyl laulate(C12:0)에서 가장 높은 활성을 보여 주었다. Gelidibacter sp. YH333에서 생산된 lipase가 Vibrio sp. YH339에 의해 생성된 lipase보다 모든 기질에 있어 높은 활성을 보여주고 있다. Gelidibacter sp. YH333에서는 약 50 KDa, 25 KDa 등 두 개의 lipase가 확인되었고 Vibrio sp. YH339에서는 약 50 KDa에 해당하는 lipase가 확인되었다.