Characterization of Lipase Produced from the Microorganisms Isolated from Mud-flat

갯벌로부터 분리된 미생물에 의해 생산된 지질 분해 효소의 특성

  • Choi, Choong-Sik (Dept. of Biotechnology, Research Institute of Genetic Engineering, Hankyong National University) ;
  • Lee, Soon-Youl (Dept. of Biotechnology, Research Institute of Genetic Engineering, Hankyong National University) ;
  • Lee, Jea-Hag (Dept. of Food and Nutrition, Seoil University)
  • Published : 2009.03.31

Abstract

This study was performed to characterize the lipases produced from Gelidibacter sp. YH333 and Vibrio sp. YH339 isolated from mud flats for industrial application of a lipase. Amount of the lipases secreted from the isolated strains was sharply increased in the proportion of increase of number of the cells. The lipases produced from the isolated strains were constitutively secreted from the cells. The lipase activity of Gelidibacter sp. YH333 was higher than that of Vibrio sp. YH339 to p-nitrophenyl esters. The lipases produced from both strains showed the highest activity in p-nitrophenyl laulate among various p-nitrophenyl esters. The molecular weights of the lipases from Gelidibacter sp. YH333 were about 50 KDa and 25 KDa, respectively. Molecular weight of the lipase from Vibrio sp. YH339 was about 50 KDa.

본 연구는 산업적으로 활용할 수 있는 lipase를 개발하기 위해 갯벌에서 분리된 Gelidibacter sp. YH333와 Vibrio sp. YH339에 의해 생산되는 lipase의 특성에 대해 연구하였다. 분리 균주들로부터 세포 외로 방출하는 lipase의 양은 세포수의 증가와 비례하여 급격하게 증가하였다. 분리 균주들에 의해 생산되는 lipase는 대부분 세포 외로 lipase를 방출함으로 lipase가 세포 밖으로 constitutively하게 분비됨을 알 수 있었다. 두 균주에서 생산된 lipase 모두 p-nitrophenyl laulate(C12:0)에서 가장 높은 활성을 보여 주었다. Gelidibacter sp. YH333에서 생산된 lipase가 Vibrio sp. YH339에 의해 생성된 lipase보다 모든 기질에 있어 높은 활성을 보여주고 있다. Gelidibacter sp. YH333에서는 약 50 KDa, 25 KDa 등 두 개의 lipase가 확인되었고 Vibrio sp. YH339에서는 약 50 KDa에 해당하는 lipase가 확인되었다.

Keywords

References

  1. Gupta, R, Gupta, N and Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64:763-781. 2004 https://doi.org/10.1007/s00253-004-1568-8
  2. Bjrkling, F, Godtfredsen, SE and Kirk, O. The future impact of industrial lipases. Trends Biotechnol. 9:360-363. 1991 https://doi.org/10.1016/0167-7799(91)90119-3
  3. Park, SH, Choi, SH, Rhee, JS and Sung, NK. Purification and enzyme properties of alkaline lipase from the Pseudomonas sp. S4-14. Kor. J Appl. Microbial. Biotechnol. 22:271-276. 1994
  4. Guo, Z and Xu, X. New opportunity for enzymatic modification of fats and oils with industrial potentials. Org. Biomol. Chern. 3:2615-2619. 2005 https://doi.org/10.1039/b506763d
  5. Ban, K, Kaieda, M, Matsumoto, T, Kondo, A and Fukuda, H. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J 8:39-43. 2001 https://doi.org/10.1016/S1369-703X(00)00133-9
  6. Jaeger, KE, Ransac, S, Dijkstra, BW, Colson, C, van Heuvel, M and Misset, O. Bacterial lipases. FEMS Microbiol. Rev. 15:29-63. 1994 https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  7. Margesin, R and Shinner, F. Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol. 33:1-14. 1994 https://doi.org/10.1016/0168-1656(94)90093-0
  8. Kulakova, L, Galkin, A, Kurihara, T, Yoshimura, T and Esaki, N. Cold-active serine alkaline protease from the psychotropic bacteria Shewanella strain AdO: gene cloning and enzyme cloning purification and characterization. Appl. Environ. Microbiol. 65:611-617. 1999
  9. Choo, DW, Kurihara, T, Suzuki, T, Soda, K and Esaki, N. A cold adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain Bl1-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64:486-491.1998
  10. Takeshi, S, Torn, N, Tatsou, K, Tokuzo, N and Nobuyoshi, E. Cold-active lipolytic activity of psychtrophic Acinetobacter sp. Strain No.6. J. Biosci. Bioeng. 92:144-148. 2001 https://doi.org/10.1263/jbb.92.144
  11. Tanaka, S. Pollutions of inland waters and remedial technology. Foods Food Ingred J Jpn. 176:27-36. 1998
  12. Alquati, C, De Gioia, L, Santarossa, G, Alberghina, L, Fantucci, P and Lotti, M. The cold-active lipase of Pseudomonas fragi: Heterologous expression, biochemical characterization and molecular modeling. Eur. J Biochem. 269:3321-3328. 2002 https://doi.org/10.1046/j.1432-1033.2002.03012.x
  13. Anguita, J, Aparicio, LBR and Naharro, G. Purification, gene cloning, amino acid sequence analysis, and expression of an extracellular lipase from an Aeromonas hydrophyla human isolate. Appl. Environ. Microbiol. 59:2411-2417. 1993
  14. Lee, HK, Ahn, MJ, Kwak, SH, Song, WH and Jeong, BC. Purification and characterization of cold active lipase from psychotrophic Aeromonas sp. LPB 4. J Microbiology. 41:22-27. 2003
  15. Um, KB, Yoon, SJ, Lee, JK, Lee, JH and Lee, SY. Isolation and characterization of a protease-producing halophilic Vibrio sp. Korean J Food Nut. 20:108-113. 2007
  16. Suzuki, T, Nakayama, T, Choo, DW, Hirano, Y, Kurihara, T, Nishino, T and Esaki, N. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primaIy structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purify. 30:171-178. 2003 https://doi.org/10.1016/S1046-5928(03)00128-1
  17. Sommer, P, Bormann, C and Gotz, F. Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl. Environ. Microbiol. 63:3553-3560. 1997
  18. Sambrook, J, Fritsch, EF and Maniatis, T. Molecular cloning: a laboratory manual, 2nd ed, pp123-146. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1989
  19. Park, SY, Kim, JT, Kang, SG, Woo, JH, Lee, JH, Choi, HT and Kim, SJ. A new esterase showing similarity to putative dienelactone hydrolase from a strict marine bacterium, Vibrio sp. GMD509. Applied Microbiology and Biotechnology. 77:107-115. 2007 https://doi.org/10.1007/s00253-007-1134-2