• Title/Summary/Keyword: Gelidibacter

Search Result 3, Processing Time 0.02 seconds

Characterization of Lipase Produced from the Microorganisms Isolated from Mud-flat (갯벌로부터 분리된 미생물에 의해 생산된 지질 분해 효소의 특성)

  • Choi, Choong-Sik;Lee, Soon-Youl;Lee, Jea-Hag
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • This study was performed to characterize the lipases produced from Gelidibacter sp. YH333 and Vibrio sp. YH339 isolated from mud flats for industrial application of a lipase. Amount of the lipases secreted from the isolated strains was sharply increased in the proportion of increase of number of the cells. The lipases produced from the isolated strains were constitutively secreted from the cells. The lipase activity of Gelidibacter sp. YH333 was higher than that of Vibrio sp. YH339 to p-nitrophenyl esters. The lipases produced from both strains showed the highest activity in p-nitrophenyl laulate among various p-nitrophenyl esters. The molecular weights of the lipases from Gelidibacter sp. YH333 were about 50 KDa and 25 KDa, respectively. Molecular weight of the lipase from Vibrio sp. YH339 was about 50 KDa.

Isolation and Characterization of Gelidibacter sp. HK-1 Producing Alkaline Protease (알칼리성 단백질 분해 효소 생산 균주 Gelidibacter sp. HK-1의 분리 및 특성)

  • Oh, Hyun-Geun;Lee, Soon-Youl;Lee, Jae-Hag
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.496-501
    • /
    • 2006
  • This study was to isolate a bacterium producing a alkaline protease from mud flats of the west seaside of Korea and to investigate the biochemical analysis of the alkaline protease producing from the isolate. The isolate was named as Gelidibacter sp. HK-1 based on 16S rRNA sequence, Gram staining and the photograph of electron microsceope. Optimum temperature for growth and pretense production of the isolate was $25^{\circ}C$. Growth of the isolate was reached at stationary phase after 10hrs followed by inoculation. Maximum activity of protease produced from the isolate was shown after 14hrs. Optimum temperature and pH for the protease activity were $45^{\circ}C$ and pH 9, respectively. Molecular weight of the pretense was about 50KD and the partial amino acid sequence of the pretense was Ala-Try-Ala-Leu-Asn-Thr-Ser-Val-Thr-Glu-Thr-Phe-Ala-Lys. The partial amino acid sequences of the protease showed significant homology with a pretense produced from Streptomyces avermitilis.

Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems

  • Ki, Bo-Min;Kim, Yu Mi;Jeon, Jun Min;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2199-2210
    • /
    • 2017
  • Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter, and Brevundimonas. However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium, and Caldicoprobacter. Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.