• Title/Summary/Keyword: link error

Search Result 644, Processing Time 0.024 seconds

Link Error Analysis and Modeling for Video Streaming Cross-Layer Design in Mobile Communication Networks

  • Karner, Wolfgang;Nemethova, Olivia;Svoboda, Philipp;Rupp, Markus
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.569-595
    • /
    • 2007
  • Particularly in wireless communications, link errors severely affect the quality of the services due to the high error probability and the specific error characteristics (burst errors) in the radio access part of the network. In this work, we show that thorough analysis and appropriate modeling of radio-link error behavior are essential to evaluate and optimize higher layer protocols and services. They are also the basis for finding network-aware cross-layer processing algorithms which are capable of exploiting the specific properties of the link error statistics, such as predictability. This document presents the analysis of the radio link errors based on measurements in live Universal Mobile Telecommunication System (UMTS) radio access networks as well as new link error models originating from that analysis. It is shown that the knowledge of the specific link error characteristics leads to significant improvements in the quality of streamed video by applying the proposed novel network- and content-aware cross-layer scheduling algorithms. Although based on live UMTS network experience, many of the conclusions in this work are of general validity and are not limited to UMTS only.

  • PDF

Enhancements of T-REFWA to Mitigate Link Error-Related Degradations in Hybrid Wired/Wireless Networks

  • Nishiyama, Hiraki;Taleb, Tarik;Nemoto, Yoshiaki;Jamalipour, Abbas;Kato, Nei
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2006
  • With the on-going wireless access technologies, the Internet has become accessible anytime anywhere. In wireless networks, link errors significantly degrade the performance of the transmission control protocol (TCP). To cope with this issue, this paper improves the recently-proposed terrestrial REFWA (T-REFWA) scheme by adding a new error recovery mechanism to its original design. In the T-REFWA scheme, senders are acknowledged with appropriate sending rates at which an efficient and fair utilization of network resources can be achieved. As the feedback values are computed independently of link errors, senders can keep transmitting data at high rates even in case of link error occurrences. Using this feature, the proposed error recovery mechanism can achieve high throughput in environments with high bit error rates. The throughput is further improved by disabling the exponential back-off algorithm of TCP so that long idle times are avoided in case of link errors. We show through simulations that the proposed method improves TCP performance in high bit error rates. Compared with several TCP variants, the proposed error recovery scheme exhibits higher link utilization and guarantees system fairness for different bit error rates.

Error Analysis of a Parallel Mechanism Considering Link Stiffness and Joint Clearances

  • Park, Woo-Chun;Song, Jae-Bok;Daehie Hong;Shim, Jae-Kyung;Lim, Seung-Reung;Kyungwoo Kang;Park, Sungchul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.799-809
    • /
    • 2002
  • In order to utilize a parallel mechanism as a machine tool component, it is important to estimate the errors of its end-effector due to the uncertainties in parts. This study proposes an error analysis for a new parallel device, a cubic parallel mechanism. For the parallel device, we consider two kinds of errors. One is a static error due to link stiffness and the other is a dynamic error due to clearances in the parts. In this study, we propose a stiffness model for the cubic parallel mechanism under the assumption that the link stiffness is a linear function of the link length. Also, from the fact that the errors of u-joints and spherical joints are changed with the direction of force acting on the link, they are regarded as a part of link errors, and then the error model is derived using forward kinematics. Lastly, both the error models are integrated into the total error, which is analyzed with a test example that the platform moves along a circular path. This analysis can be used in predicting the accuracy of other parallel devices.

Tip Position Control of a Flexible-Link Manipulator with Neural Networks

  • Tang Yuan-Gang;Sun Fu-Chun;Sun Zeng-Qi;Hu Ting-Liang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.308-317
    • /
    • 2006
  • To control the tip position of a flexible-link manipulator, a neural network (NN) controller is proposed in this paper. The dynamics error used to construct NN controller is derived based on output redefinition approach. Without the filtered tracking error, the proposed NN controller can still guarantee the closed-loop system uniformly asymptotically stable as well as NN weights bounded. Furthermore, the tracking error of desired trajectory can converge to zero with the proposed controller. For comparison an NN controller with filtered tracking error is also designed for the flexible-link manipulator. Finally, simulation studies are carried out to verify the theoretic results.

Measurement and analysis of CNC machine tool errors using ball link bar system (Ball link bar를 이용한 CNC 공작 기계의 정밀도 계측과 해석에 관한 연구)

  • Kwon, Hyuk-Dong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.289-296
    • /
    • 1997
  • In this paper, a method has been proposed for error measurement/diagnosis of CNC machine tools using the ball link bar on three dimensional space. For the circular motion error measurement, deviation between the desired and actual test path has been measured and analysed using a new type of ball link which incorporates ideal three point contact between reference balls and sockets. Computer program for the error evaluation has been developed and implemented under PC environment. Using the developed program, the circular test data on a CNC machine tool have been analysed, and thus, machine tool errors were effectively evaluated.

  • PDF

Effect of Link Stiffness on Error of Cubic Parallel Manipulator in 3D Workspace (3차원 작업영역에서 링크 강성이 육면형 병렬 기구 오차에 미치는 영향)

  • 박성철;임승룡;김현수;최우천;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.397-401
    • /
    • 1997
  • An error analysis is very important for a precision machine to estimate its performances. This study deals with error of a new parallel device, cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the cubic parallel device vary depending on the stiffness of the manipulator. The stiffness of each link depends on the directions of the link and actuation force. In this paper, the stiffness of the manipulator is calculated by ARAQUS and the position and orlentation errors are predicted within a given workspace. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing parallel devices.

  • PDF

Quality of Departure Time Based On-line Link Travel Time Estimates (구간통행속도 추정을 위한 고속도로 검지기자료 처리기법 개발)

  • Park, Dong-Joo;Kim, Jae-Jin;Rho, Jung-Hyun;Kim, Sang-Beom
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.145-154
    • /
    • 2008
  • The purpose of this study is to evaluate the quality of on-line departure time-based link travel time estimates. For this, accuracy (i.e. estimation error) and timeliness (i.e. degree of time lag) are proposed as MOE of the quality of on-line link travel time estimates. Then the relationship between quality of link travel time estimates and link length and level of congestion is analyzed. It was found that there is trade-off between the accuracy and timeliness of link travel time estimates. The estimation error was modeled to consist of two components: one is systematic error and the other is mean square error which reflects level of congestion. further, time lag was again segmented into three parts for the analysis purpose. There are minimum one, congestion-related one, and update interval-related one. From the real-world data using AVI system, it was revealed that regardless of the link length and level of congestion, 10 minutes of time lag occurs in general.

  • PDF

Scalability Analysis of MANET IPv6 Address Auto-configuration Protocols based on Link Error Modeling (링크 에러 모델링을 이용한 MANET 환경에서의 IPv6 자동주소 설정 방식의 확장성 분석)

  • Kim, Sang-Chul
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.282-291
    • /
    • 2008
  • This paper focuses on message complexity performance analysis of MANET AAPs in reference to link errors generated by the mobile wireless nodes. To obtain the message complexity performance of AAPs in reference to the link error probability ($P_e$), an enhancement was made by proposing the retransmission limit (S) to be computed for error recovery (based on the link error probability), and then for each of the AAPs the control procedures for the retransmission limit have been properly included. The O-notation has been applied in analyzing the upper bound of the number of messages generated by a MANET group of N nodes. Based on a link error probability range of $P_e=0$ to 0.8, the AAPs investigated in this paper are Strong DAD, Weak DAD with proactive routing protocol (WDP), Weak DAD with on-demand routing protocol (WDO), and MANETconf. Based on the simulation results and analysis of the message complexity, for nominal situations, the message complexity of WDP was lowest, closely followed by WDO. The message complexity of MANETconf is higher than that of WDO, and Strong DAD results to be most complex among the four AAPs.

Analysis of Link Error Effects in MANET Address Autoconfiguration Protocols

  • Kim, Sang-Chul;Chung, Jong-Moon
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.84-93
    • /
    • 2009
  • This paper focuses on message complexity performance analysis of mobile ad hoc network (MANET) address autoconfiguration protocols (AAPs) in reference to link errors generated by mobile wireless nodes. An enhancement was made using a proposed retransmission limit, S, to be computed for error recovery (based on the link error probability), to measure message complexity of AAPs in reference to the link error probability, $P_e$. The control procedures for the retransmission limit have been included for each of the AAPs. Retransmission limit control is critical for efficient energy consumption of MANET nodes operating on limited portable energy. O-notation has been applied to analyze the upper bound of the number of messages generated by a MANET group of nodes. The AAPs investigated in this paper are strong duplicate address detection (DAD), weak DAD with proactive routing protocol (WDP), weak DAD with on-demand routing protocol (WDO), and MANETConf. Each AAP reacts different to link errors, as each AAP has different operational procedures. The required number of broadcasting, unicasting, relaying, and received messages of the nodes participating in a single-node joining procedure is investigated to asymptotically calculate the message complexity of each AAP. Computer simulation was conducted and the results have been analyzed to verify the theoretical message complexity bounds derived. The message complexity of WDP was lowest, closely followed byWDO, based on the simulation results and analysis of the message complexity under nominal situations. The message complexity of MANETConf was higher than WDO, and strong DAD resulted to be most complex among the four AAPs.

An Enhanced TCP Congestion Control using Link-Error Rates at Wireless Edges (무선 에지의 링크 오류율을 이용한 개선된 TCP 혼잡제어)

  • Oh, Jun-Seok;Park, Tan-Se;Park, Chang-Yun;Jung, Choong-Il
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.794-798
    • /
    • 2010
  • Assuming that a wireless link is mostly used at the network edge and the wireless NIC driver keeps monitoring the error rate of its link, this paper proposes an enhanced TCP congestion control, TCP-L (TCP Link-Aware). TCP-L predicts true congestion losses occurred inside the wired link area by utilizing the wireless link error rate. As a result, it mitigates performance degradation caused from TCP congestion control actions when segments losses occur in a wireless link. Experimental results show that TCP-L provides better performance and fairness in lossy wireless links than existing TCP congestion control schemes. Our approach utilizing the characteristic of the link at TCP could be well adapted to new wireless environments such as Cognitive Radio and ACK-less IEEE 802.11, where a frame may be delivered with a very long delay or lost in the link.