• Title/Summary/Keyword: link controller

Search Result 577, Processing Time 0.025 seconds

Stabilization of a Two-link Inverted Pendulum with a Rate Gyro (자이로를 이용한 두 링크 도립진자의 자세안정화)

  • Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 2012
  • Human generally uses three methods to keep balance. One of them is using reactive momentum such as swing an upper body or arms. In this study, we proposed a balancing controller for the reactive momentum method using an inverted pendulum. We simplified a human or a humanoid robot as a two-link inverted pendulum having two edges. In addition, we proposed a distinctive condition for controller transition. If a human is pushed, he has to change a balancing controller from using an ankle torque to using a reactive momentum or changing foot placement. When the balancing controller is changed from using an ankle torque to using a reactive momentum, it is required a proper timing to keep a stability and make smooth movement. In the experiment, the proposed controller and distinctive condition were verified.

A Controller Design for a Stability Improvement of an On-Board Battery Charger

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.951-958
    • /
    • 2013
  • This paper proposes the controller design for a stability improvement of an on-board battery charger. The system is comprised of a power factor correction (PFC) circuit and phase shift full-bridge DC-DC converter. The PFC circuit performs the control of the DC-link voltage and the input power factor. The DC-DC converter regulates the voltage and the current in the battery using the DC-link voltage. This paper proposes the design method of PI controller for the PFC circuit using a small signal model. The analysis and design of a type-three controller for the DC-DC converter is also presented. A simulation and experiment has been performed on the on-board battery charger and their results are presented to verify the validity of the proposed system.

DC Link Voltage Controller for Three Phase Vienna Rectifier with Compensated Load Current and Duty (부하 전류 및 듀티를 보상한 3상 비엔나 정류기의 출력 전압 제어 기법)

  • Lee, Seung-Tae;Lim, Jae-Uk;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • A new dc link voltage controller for a three-phase Vienna rectifier is proposed in this study. This method uses load current and duty information to control dc link voltage. The load current affects the capacitor current and varies the output voltage. Existing methods do not perfectly consider the load current. By considering load current with duty compensation in the proposed method, the transient response is improved by the load variation regardless of the input voltage. The effectiveness of the proposed method is compared with other control methods when the load changes rapidly using PSIM simulation and experiment.

Attitude Control of The Double Inverted Pendulum with Compliant Joint (순응성 관절을 갖는 2축 도립 진자의 자세 제어)

  • Jeon, Se-Joong;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2983-2985
    • /
    • 1999
  • This paper presents the attitude control of the double inverted pendulum with compliant joint. The biped robot with compliant ankle joint instead of a motor have a good contact between it's sole and ground in the uneven ground. The compliant ankle joint proposed here is composed of springs and mechanical constraint. The lower link is hinged on the plate to free for rotation in the vertical plate. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The algorithm for controlling a proposed inverted pendulum is nonlinear feedback controller. Simulation with mathematical model are conducted to show the validity of the proposed controller.

  • PDF

Design of a Speed Controller for Vertical One-Link Manipulator Using Internal Model-based Disturbance Observer (내부 모델 기반 외란 관측기를 이용한 수직 1축 머니퓰레이터의 속도 제어기 설계)

  • Lee, Cho-Won;Kim, In Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.751-754
    • /
    • 2015
  • This paper deals with a robust speed control problem of a vertical one-link manipulator in the presence of parameter uncertainties and unknown input disturbance. Uncertain load weight causes an additional sinusoidal disturbance in the rotation of the link. In order to improve the robustness against parameter uncertainties and external input disturbances, this paper employs an internal model-based disturbance observer approach. Comparative computer simulations are performed to test the performance of the proposed controller. The simulation results show the enhanced performance of the proposed method.

Swing Up and Stabilization Control of the Pendubot

  • Yoo, Ki-Jeong;Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.4-71
    • /
    • 2001
  • This paper presents swing up and stabilization control of an underactuated two-link robot called the Pendubot. This device is a two-link planar robot with an actuator at the shoulder, but no actuator at the elbow. The controller swings up first link from its open loop stable equilibrium point to the unstable equilibrium point and then, catches the unactuated second link to balance it there. Two control algorithms are used for this task. Proportional Derivative Control technique is used to design the swing up control. The linear model of Pendubot is obtained by linearizing the nonlinear dynamic equations about the desired equilibrium point and LQR technique is used to design a stabilization controller.

  • PDF

Vibration Control a Flexible Single Link Robot Manipulator Using Neural Networks (신경회로망을 이용한 유연성 단일 링크 로봇 매니퓰레이터의 진동제어)

  • 탁한호;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.55-66
    • /
    • 1997
  • In this paper, applications of neural networks to vibration control of flexible single link robot manipulator are ocnsidered. The architecture of neural networks is a hidden layer, which is comprised of self-recurrent one. Tow neural networks are utilized in a control system ; one as an identifier is called neuro identifier and the othe ra s a controller is called neuro controller. The neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by dynamic error-backpropagation algorithm(DEA). To guarantee concegence and to get faster learning, an approach that uses adaptive learning rates is developed by introducing a Lyapunov function. When a flexible manipulator is ratated by a motor through the fixed end, transverse vibration may occur. The motor torque should be controlle dinsuch as way, that the motor is rotated by a specified angle. while simulataneously stabilizing vibration of the flexible manipulators so that it is arrested as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large body motions, as well as the flexural vibrations. Therefore, dynamic models for a flexible single link manipulator is derived, and LQR controller and nerual networks controller are composed. The effectiveness of the proposed nerual networks control system is confirmed by experiments.

  • PDF

Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple (주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계)

  • Kim, Yong-Jung;Lee, Jinsung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

The design of robust controller to frequency variation in an one-link flexible robot manipulator (단일링크 유연성 로보트 매니퓰레이터의 주파수변동에 대한 강건성 제어기설계)

  • 문종우;박정일;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.30-33
    • /
    • 1991
  • The natural frequency of an one-link flexible robot manipulator may be varied due to many kinds of causes and this natural frequency is regarded as the uncertain element. Utilizing measured state the robust controller is designed for bounding every system response within a certain neighborhood of the zero state.

  • PDF

Position Control for a Flexible Manipulator Using Sliding Modes (슬라이딩 모드를 이용한 유연한 매니퓰레이터의 위치제어)

  • 김정구;박창용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.321-321
    • /
    • 2000
  • This paper presents a sliding mode controller based on variable structure for the tip position control of a single-link flexible manipulator. Dynamic equations of a single-link flexible manipulator are derived from the Euler-Lagrange equation using a Lagrangian assumed modes method based on Bernoulli-Euler Beam theory. Simulation results are presented to show the validity of the system modeling, controller design.

  • PDF