• Title/Summary/Keyword: linear wave theory

Search Result 295, Processing Time 0.025 seconds

Computation of Hypothetical Tsunamis on the East Coast in Korea (공백역 지진에 의한 동해안의 지진해일 산정)

  • 최병호;홍성진;이제신
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.73-86
    • /
    • 2002
  • Prognostic characteristics of hypothetical tsunamis in the East Sea are discussed based on numerical model simulations of linear long wave theory and wave ray for 28 source zones of tsunamigenic earthquake selected by the seismic gap theory. As a result, the propagation patterns of tsunamis due to hypothetical earthquake are presented and analyses also lead to selection of the geographical zones with low risk of tsunamis.

Extraction of Wave Energy Using the Coupled Heaving Motion of a Circular Cylinder and Linear Electric Generator (원기둥과 선형발전기의 연성 수직운동을 이용한 파 에너지 추출)

  • Cho, Il-Hyoung;Kweon, Hyuck-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.9-16
    • /
    • 2011
  • The feasibility of wave energy extraction from a heaving truncated cylinder and the corresponding response of the linear electric generator (LEG) composed of spring, magnet, and coil has been investigated in the frame of three-dimensional linear potential theory. The heaving motion of a circular cylinder is calculated by means of the matched eigenfunction expansion method. Further, the analytical results are validated by numerical results using the ANSYS AQWA commercial code. By the action of a heaving circular cylinder, the magnet suspended by a spring can slide vertically inside the heaving cylinder. The mechanical power is extracted from the magnet motion relative to the coil/stator which is attached to the cylinder. The coupled ODE of a heaving cylinder and LEG system in waves is derived to obtain the magnet motion relative to a cylinder. To maximize the relative motion of the magnet, both the buoy draft and the LEG system parameters (spring stiffness, damping) should be selected properly for generating the double resonance considering the peak frequency of the target spectrum.

SURFACE-WAVE PROPAGATION THROUGH A METAL GAP WITH THE DIELECTRIC CORE SUBDIVIDED INTO MULTIPLE THIN FILMS

  • Mok, Jin-Sik;Lee, Hyoung-In
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.315-327
    • /
    • 2007
  • Mathematical aspects of the electromagnetic surface-wave propagation are examined for the dielectric core consisting of multiple sub-layers, which are embedded in the gap between the two bounding cladding metals. For this purpose, the linear problem with a partial differential wave equation is formulated into a nonlinear eigenvalue problem. The resulting eigenvalue is found to exist only for a certain combination of the material densities and the number of the multiple sub-layers. The implications of several limiting cases are discussed in terms of electromagnetic characteristics.

INTERACTIONS OF A HORIZONTAL FLEXIBLE MEMBRANE WITH OBLIQUE INCIDENT WAVES

  • I.H. Cho;S.W. Hong;Kim, M.H.
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.135-138
    • /
    • 1997
  • The interaction of oblique monochromatic incident waves with a horizontal flexible membrane is investigated in the context of two-dimensional linear hydro-elastic theory. First, analytic diffraction and radiation solutions for a submerged impermeable horizontal membrane are obtained. Second, the theoretical prediction was compared with a series of experiments conducted in a two-dimensional wave tank at Texas A&M University. The measured reflection and transmission coefficients reasonably follow the trend of predicted values. Using the developed computer program, the performance of surface-mounted or submerged horizontal membrane wave barriers is tested with various system parameters and wave characteristics. It is found that the properly designed horizontal flexible membrane can be an effective wave barrier and its efficiency can be further improved using a porous material.

  • PDF

The submerged flexible membrane breakwaters in oblique seas

  • S.T.Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05b
    • /
    • pp.1133-1138
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wane interactions with a system composed of full submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing. The fully submerged systems allow surface and bottom clearances to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of fille second kind) tat satisfy the Helmholz governing equation. Using this computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, clearances. spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters call, if it is properly tuned to the coming waves, have good performances ill reflecting the obliquely incident waves over a tilde range of wave frequency and headings.

  • PDF

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device (BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구)

  • Kim Jin-Ha;Lew Jae-Moon;Hong Do-Chun;Hong Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

Performance Analysis of OWC-MB Hybrid Wave Energy Harvesting System Attached at Caisson Breakwater (케이슨방파제 부착 OWC-MB 복합형 파력발전시스템 성능해석)

  • Seo, Ji Hye;Park, Woo-Sun;Lee, Joong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.589-597
    • /
    • 2015
  • Wave energy harvesting system using OWC(Oscillating Water Column) and MB (Movable Body) attached at the caisson breakwater was studied. This system was suggested to maximize wave energy extraction using resonant phenomena of oscillating water column and buoy in wave channel (Park et al., 2014). Not only incident waves but also reflected waves from the breakwater can be used as sources of exciting force for harvesting wave energy efficiently. Using Galerkin finite model based on the linear wave theory (Park, 1991), the performance of the system was evaluated for various damping ratios of power take off system. Numerical results show that the proposed system is excellent in efficiency compared with that of conventional system and the performance of the system is governed by the resonance of oscillating water column in the wave channel. In addition, the additional efforts to minimize viscous damping was found to be necessary because viscous damping occurring in the channel and around the moving buoy is significant in generation efficiency.

A Simple Simulation of Parabola-Shaped Clouds in the Lee of a Low Bell-Shaped Mountain Using the ARPS

  • Lee, Seung-Jae;Lee, Hwa-Woon;Kang, Sung-Dae
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.541-548
    • /
    • 2007
  • A three-dimensional linear model and the Advanced Regional Prediction System (ARPS) were used to simulate parabola-shaped disturbances and clouds in the lee of a bell-shaped mountain. The ARPS model was compared in the x-y plane against the linear model's analytic solution. Under similar conditions with the linear theory, the ARPS produced well-developed parabola-shaped mountain disturbances and confirmed the features are accounted for in the linear regime. A parabola-shaped cloud in the lee of an isolated bell-shaped mountain was successfully simulated in the ARPS after 6 hours of integration time with the prescribed initial and boundary conditions, as well as a microphysical scheme.

Numerical Analysis of Reflection Characteristics of Perforated Breakwater with a Resonant Channel (공진수로 내장형 유공방파제의 반사특성에 관한 수치해석 연구)

  • Kim, Jeong-Seok;Seo, Ji-Hye;Lee, Joong-Woo;Park, Woo-Sun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.503-509
    • /
    • 2014
  • In this study, a new concept perforated breakwater is proposed, which is having resonant channels. In the channel, perforated plate is installed for dissipating wave energy induced by flow separations. The breakwater has two advantages compared with conventional perforated breakwater having wave chamber with slotted walls. One is easy to control the target wave condition for dissipating wave energy, and the other is having the high structural safety because the structural members are not exposed to impact waves, directly. To evaluate wave reflection characteristics of the proposed breakwater, numerical experiment was carried out by using Galerkin's finite element model based on the linear potential theory. The results indicated that considerable energy dissipation occurs near the resonant period of channel, and wave reflection characteristics are affected by channel shape, location and opening ratio.