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WITH OBLIQUE INCIDENT WAVES
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ABSTRACT

The interaction of oblique monochromatic incident waves with a horizontal flexible
membrane is investigated in the context of two-dimensional linear hydro-elastic theory.
First, analytic diffraction and radiation solutions for a submerged impermeable horizontal
membrane are obtained. Second, the theoretical prediction was compared with a series of
experiments conducted in a two-dimensional wave tank at Texas A&M University. The
measured reflection and transmission coefficients reasonably follow the trend of predicted
values. Using the developed computer program, the performance of surface-mounted or
submerged horizontal membrane wave barriers is tested with various system parameters
and wave characteristics. It is found that the properly designed horizontal flexible
membrane can be an effective wave barrier and its efficiency can be further improved using
a porous material.

1. MATHEMATICAL FORMULATION AND ANALYTIC
SOLUTIONS

We consider the interaction of a horizontal membrane wave barrier with monochromatic
oblique incident waves. Cartesian axes are chosen with the x-axis along the mean free
surface and y-axis pointing vertically upwards. The water depth is denoted by 4 and the
submergence depth of the membrane by d. It is assumed that both ends of the membrane
are fixed at x=*a, and a uniform tension 7 is applied on the membrane in the x
direction (see Fig.1). It is also assumed that the fluid is incompressible and inviscid, and the
wave and membrane motions are small so that linear potential theory can be used. The fluid
particle velocity can then be described by the gradient of a velocity potential ®(x, y,z,¢).

Assuming harmonic motion of frequency @, the velocity potential can be written as
D(x,y,z,t) = R[P(x, y)e** ], where k, =k sin@ is the z-component wave number and

6 is the heading of incident waves with respect to the x axis. Similarly, the vertical
displacement of membrane can be written as
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§(x,2,0) = RIE(x)e""], (1)
where &(x) is the complex displacement of membrane.

The velocity potential ¢ satisfies the Helmholz equation

¢ d*

'5x—2 +§;‘T - k,z sin® 9¢ =0 inthe fluid, 2
with the following boundary conditions

@-wp—o on y=0 (V‘"ai) 3)
Jy ' g

d9

—=0 =—h. 4
% ony 4)
&iﬁ‘}. (% + ik, cos B¢) = 0. )
—%:-iw{ on y=-d,-a<x<a. (6

The complex displacement of membrane can be expanded in terms of a set of natural
modes of the membrane:

£ =Y 6.1, x), | %

I=1 '
where ¢, is the unknown complex modal amplitude corresponding to the ! th mode. The
modal functions and eigenvalues of the membrane satisfying the membrane equation and
the end condition are given by

S
ﬁs(x)=cos3’a—x, S=[—2(—’%”—”—” (1=123,..),
f,(X)'—- A.IAX (8)
fAay=sin==, A =ir (=123..),

where the superscripts S and A denote symmetric and asymmetric modes about x =0,

respectively. The modal functions given in equation (8) are orthogonal to each other in the

interval [—a,a]:

[ fo =12 177 ©)
A

Including all the flexible membrane modes, the complex potential ¢(x, y) can be expressed

in the form
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O, ) = B (x, )+ 2, G (X, ),
I=1
Op(x, ¥) =, (x, y) + ¢ (x, ¥),

where ¢, ,¢, are the incident and diffraction potential and ¢; ¢, denote the scattering and

(10)

radiation potential, respectively.

Neglecting viscous (or material) damping, the motion of membrane is governed by the

inhomogeneous one-dimensional wave equation as follows:
dz
T;,;?— +mw*E =—ipo[p® (x,-d)— ¢V (x,~d)), (11)

where T,p, and m are the membrane tension, fluid density, and membrane mass per unit
length, respectively. Region (I) is defined by x<-a,-h<y<0, region (II) by
|x|<a,~d<y<0 and region (D) by [x<a, -h<y<-d. Substituting

¢(x, y) = ¢p(x, y) + ig,-¢,k(x, y), €(x) = igi f;(x) into (11) yields

=

0 d2 )
zg,'{_T fl (x)—mwzfj(x)“PjR(x)}=PD(x), (12)

P dx®

where

P (x) = ip@l9 (x.~d) - 933 (x,~d)],
pp(x) = ipo(es’ (x,~d) - ¢ (x,—d)].
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Fig.1 Definition sketch for horizontal impermeable flexible membrane
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Fig.2 Reflection coefficients of a submerged impermeable membrane breakwater as
function of submergence depth ¢/ h and wavenumber ki for a/h= 05,T / pgh® =01,

and8 =0°

Fig.3 Modal response amplitude as function of wavenumber kh and horizontal coordinate

k,h

3rd mode

x/2afor d/h=02,a/h=05T/pgh*=01,and0 =0
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