• Title/Summary/Keyword: linear time

Search Result 7,506, Processing Time 0.036 seconds

A Note on Positive Invariant Set for Linear Uncertain Discrete-Time Systems

  • Matsumoto, H.;Otsuka, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.571-574
    • /
    • 2005
  • This paper gives some sufficient conditions for a given polyhedral set which is represented as a set of linear inequalities to be positive D-invariant for uncertain linear discrete-time systems in the case such that the systems matrices depend linearly on uncertain parameters whose ranges are given intervals. Further, the results will be applied to uncertain linear continuous systems in the sense of the above by using Euler approximation.

  • PDF

Robust H$_\infty$ Control for Discrete Time-delay Linear Systems with Frobenius Norm-bounded Uncertainties (파라미터 불확실성을 가지는 이산 시간지연 시스템에 대한 견실 H$_\infty$ 제어)

  • 김기태;이형호;이상경;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.23-23
    • /
    • 2000
  • In this paper, we proposed the problems of robust stability and 개bust H$_{\infty}$ control of discrete time-delay linear st.stems with Frobenius norm-bounded uncertainties. The existence condition and the design method of robust H$_{\infty}$ state feedback control]or are given. Through some changes of variables and Schur complement, the obtained sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

  • PDF

An $H_{\infty}$ Controller Design for linear Systems with Input Time Delay (제어 입력에 시간 지연을 갖는 선형 시스템의 $H_{\infty}$ 설계)

  • Kim, Hong-Rak;Yoo, Seog-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.42-45
    • /
    • 1996
  • This paper presents a solution of the $H_{\infty}$ control problem for linear systems with input time delay. $H_{\infty}$ norm bounded condition is obtained as a sufficient condition for linear systems with input time delay. Based upon this sufficient condition, an $H_{\infty}$ controller design method which involves the solutions of linear matrix inequalities via convex optimization is developed.

  • PDF

New Stability Criteria for Linear Systems with Interval Time-varying State Delays

  • Kwon, Oh-Min;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.713-722
    • /
    • 2011
  • In the present paper, the problem of stability analysis for linear systems with interval time-varying delays is considered. By introducing a new Lyapunov-Krasovskii functional, new stability criteria are derived in terms of linear matrix inequalities (LMIs). Two numerical examples are given to show the superiority of the proposed method.

FRACTIONAL GREEN FUNCTION FOR LINEAR TIME-FRACTIONAL INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • Momani, Shaher;Odibat, Zaid M.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.167-178
    • /
    • 2007
  • This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.

Robust Stability of Uncertain Linear Large-scale Systems with Time-delay via LMI Approach (LMI 기법을 이용한 시간지연 대규모 불확정성 선형 시스템의 강인 안정성)

  • Lee, Hee-Song;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1287-1292
    • /
    • 1999
  • In large-scale systems, we frequently encounter the time-delay and the uncertainty, and these should be considered in the design of controller because these are the source of the degradation of the system performance and instability of system. In this paper, we consider the robust stability of the linear large scale systems with the uncertainties and the time-delays. The considered uncertainties are both structured uncertainty and the unstructured uncertainty. Also, the considered time-delays are time-varying having finite time derivative limits. Based on the Lyapunov theorem and the linear matrix inequality(LMI) technique, we present two sufficient conditions that guarantee the robust stability of the system. The conditions are expressed as the LMI forms which can be easily checked their feasibility by using the well-known LMI control toolbox. Finally, we show by two examples that our results are less conservative than the previous results.

  • PDF

Fractional Fourier Domains and the Shift-Invariance Characteristics of Linear Time-Frequency Distributions (부분 푸리에 영역과 선형 시간-주파수 분포의 옮김 불변 특성)

  • Durak Lutfiye;Kang Hyun Gu;Yoon Seokho;Lee Jumi;Kwon Hyoungmoon;Choi Sang Won;Song Iickho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1060-1067
    • /
    • 2005
  • In this paper, we generalize the shift-invariance properties of linear time-frequency distributions to the fractional Fourier domains that interpolate between the time and frequency domains. Magnitude-wise shift invariance in arbitrary fractional Fourier domains distinguishes the short-time Fourier transform (STFT) among all linear time-frequency distributions and simplifies the interpretation of the resultant distribution. We prove that the STFT is the only linear distribution that satisfies the magnitude-wise shift-invariance property in the fractional Fourier domains.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

Measuring of Linear Motion Accuracy of NC Lathe using Linear Scales (리니어 스케일을 이용한 NC 선반의 직선 운동정도 측정)

  • 김영석;김재열;한지희;정정표;윤원주;송인석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1243-1248
    • /
    • 2003
  • It is very important to measure linear motion accuracy of NC lathe as it affects all other parts of machines machined by them in industries. If the motion accuracy of NC lathe is bad, the dimension accuracy and the change-ability of works will be bad in the assembly of machine parts. In this paper, computer software systems are organized to measure linear motion of ATC(Automatic tool changer) on zx plane of NC lathe using two linear scales and the time pulses coming out from computer in order to get data at constant time intervals from the linear scales. And each sets of error data obtained from the test is discripted to plots and the results of linear motion errors are expressed as numerics by computer treatment.

  • PDF

$H_\infty$ Controller Design for Discrete-time Linear Systems with Time-varying Delays in States using S-procedure (S-procedure를 이용한 상태에 시변 시간지연을 가지는 이산 선형 시스템에 대한 $H_\infty$ 제어기 설계)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • This paper deals with the H$_{\infty}$ control problems for discrete-time linear systems with time-varying delays in states. The existence condition and the design method of the H$_{\infty}$ state feedback controller are given. In this paper, the H$_{\infty}$ control law is assumed to be a memoryless state feedback, and the upper-bound of time-varying delay and S-procedure are used. Through some changes of variables and Schur complement, the obtained sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.