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Abstract

This paper deals with the H., control problems for discrete-time linear systems with
time-varying delays in states. The existence condition and the design method of the H.. state
feedback controller are given. In this paper, the H. control law is assumed to be a memoryless
state feedback, and the upper-bound of time-varying delay and S -procedure are used. Through

some changes of variables and Schur complement, the obtained sufficient condition can be rewritten
as an LMI(linear matrix inequality) form in terms of all variables.
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developed, many H. state feedback controller design
algorithms of time delays systems were presented.
But many related works treated the H. state

I . Introduction

Recently the time delay is main concermns because
time delays often are the causes for instability and
poor performance of control systems. Since some

feedback controller design algorithms in continuous—
time case only[l"”. And most of the results are
related to the systems with constant time delays and

works of H. controller design methods have been delay iﬂdemndent“‘ 3 Since the sizes of time delays

are allowed to be arbitrary large in the delay

Y IEEH, BB EFERTEN

(School of Electronic and Electrical Engineering,
Kyungpook National University)

B HF20014F9H4 8, 4892002461 H22H

independent case, increasing attention has been paid
to time-varying delays and the delay dependent
analysis™ *. is to find
solutions at a time using LMI technique in discrete

Therefore our objective
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time-varying delays systems.

Little attention has been paid to discrete-time
linear systems with time delays. Because they can
be transformed into the systems with no time delays
via state augmentations, the control problems for
discrete-time linear systems with time delays can be
solved by using the control theory of discrete-time
linear systems[S]
linear systems with time-varying delays, the existing
theory cannot be directly applied because the state
augmentation approach cannot be simply applied to

. However, in case of discrete-time

them due to time-varying delays. In crder to solve
this problems, Song et al® dealt with the Heo
control problems for discrete-time linear systems
with time-varying delays in state. They showed the
sufficient condition for the H. control and proposed
a suitable control law. However, they did not
considered time-varying delays in the controlled
output. And Kim et al™ considered the H. control
problem for discrete time-varying delays systems in
another approach. Therefore, we deal with discrete-
time linear systems with time-varying delays in
states. Especially, we solve the H. control problem
for these systems using the upper-bound of time-
varying delay and S -procedure.

In this paper, we propose the H., state feedback
controller design algorithm of discreie-time linear
systems with time-varying delays in states. The
existence condition and the design method of H.
state feedback controller are given. The H. control
law is assumed to be a memoryless state feedback,
and the upper-bound of time-varying delay and S
—procedure are used. Through some changes of
the obtained
sufficient condition can be rewritten as an LMI form
in terms of all variables. Using the LMI toolbox, the
solutions can be easily obtained at a time™.

variables and Schur complement,

The notations in this paper are quite standard. R,

nxm

R and R
integer numbers, the set of the
Buclidean space and the set of all

denote, respectively, the set of
n-dimensional

nXm real

€S it

matrices. The superscript “ 7" denotes the matrix
transpose and the notation X= Y(respectively, X> Y)
where X and Y are symmetric matrices, means
that X— Y is positive semi-definite (respectively,
I is the identity matrix with
L0, o]

square summable vector sequence over [0, o].

positive  definite).

compatible dimension. is the space of

0. H. Performance Analysis

Consider the discrete-time linear system with
time-varying delays in states described by the
difference delay equation

x(k+1) =Ax(k)+ Aux(k—d(k)+ Bulk),
2(B) = Cx{B)+ Coxlb—d(R)+Dw(k, Q1)

k) =0, V k<0,

where xz(k)e R" is the state, w(he R' is the
exogenous input, which belongs to #4[0, o0}, and
2B e R’ is the controlled output. All matrices have
appropriate dimensions and we assume that all states
are measurable for state feedback. the time-varying
delay d(k)e R is the positive integer term satisfying

0<dB<m, V k=0. @

We discuss about Schur complement used in this
paper. One of the basic ideas of LMI problem is that
nonlinear (convex) inequalities are converted to LMI
form using Schur complement.

Lemma 17 : For the symmetric matrix L=[L1T1 le],
L12 L22

the following are equivalent as follows:

i) L<0,
i) Lyp<0, Lyp—LHLy'Lyp<o, 3
iii) Lp<0, Ly—LpLz'LE<O0.

[ |
We will often encounter the constraint that some
quadratic function be negative whenever some other



20024 38 ETFLLeHEH

quadratic functions are all negative. In this paper, we
will use this S-procedure.

Lemma 2 : Let Fy, .., F, be quadratic functions

of the variable ¢e R™

FO:=¢TTe+2uft+v, i=0,..,p (4)

where T;= TT. We consider the following condition

on Fy, ..., Fy

Fo(9 =0 for all ¢ such that F(©=0, i=1, .., p
5)

Obviously if there exist r,=0,
for all ¢,

ey 7,20 such that

R = 3 e F (020, ®)

then (5) holds. It i1s a nontrivial fact that when
p=1, the converse holds, provided that there is
some &, such that F(&)>0.
|
In here, we will show that the system (1) is
quadratically stable with an H. norm bound 7. We
introduce the Lyapunov functional (7) such that the
discrete time-varying delays system (1) is quadrati-
cally stable.

iz A= BTPxB+ 3 5T 2 R, (D)

where P and R are positive definite matrices.

>0, and >0, the
system (1) is quadratically stable with H, norm

Lemma 3:For given m>0,

bound 7 if there exist positive definite matrices P
and R such that

ATPA+ CTC~P+mR+tR  ATPA,+C'C
d
* AlPA+CIC,~— R
*
*

*
*
* *

*
*

*
*

(97)

B39% SCiR % 2% 13
ATPB+CTD 0 0 0 0
AlPB+CID 0 0 0 0

B'PB+D'D-YI 0 - 0 0
* — R+ R 0 . 0 0 )
* * O TRfwR 0 0 '
x * * —R+mR 0
* * * * — R+ R

holds for the time-varying delay (2).

Proof : Firstly, we define a Lyapunov functional as
(7). Taking the difference of the Lyapunov functional
(7) vields

AWVx, k) =Wx, k+1)— Wx, k)

=x(k+1)TPx(k+1)+
C)]

g\ i= 211_ix(i) TRx() — (B TPx(H)
B g\ ,-;Z’_ () TR

When assuming zero input, we have

x(B) TIATPA—~P+mR ATPA,
x(k— d(R)) * AJPA,
x(k—1) * *
AV(x, B)= x(k'—Z) * *
x(k—m+1) « N
x(b—m) * *
0 0 - 0 0 x(k)
0 0 - 0 0 ||xe—dm)
-R 0 - 0 0 x(k—1)
* —R~ 0 0 x(k=2) |<0,
o —.R(.) x(k—.m-i-l)
. R | R PRGN 10

where (10) is not an LMI form in terms of all
variables. In order to make (10) to LMI, we use the
upper-bound of time-varying delay (2), ie. the fact
that the time-varying delay o&(# is less than or
equal to the upper-bound of time-varying delay, m.
Therefore, in addition to Lemma 2, (10) is converted

as follows:
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AV, £)
(8 17[ATPA-P+mR+:R  ATPA,
2 k—d(£)) * AlPA R
(=1} * *
=] k-2 * *
A k= 1) . *
2{— ) * *
0 0 ) 0 o)
0 0 0 0 (ke —dl £Y)
—R+zR 0 - 0 0 2(k—1)
* —R+R - 0 0 x(k=2) | <0,
. " ~R+mR 0 k= m+1)
* * * — R+ R 2(k— )
(11)

where ensures the quadratic stability of the closed
loop system (1). In the next place, assume the zero
initial condition and introduce

7= B [ AB—FudTu®]. (12
Noting
J< B0 TR — Puh B+ AV, Bl (13)
and further substituting (11) into (13) and let
&R =[x(B) " x(k—dB)" wBT (k-1 o
=27+ 2k=m+ D7 2(k=m) 1"
then
J< gos(k)Tzak), (15)

where Z is defined

ATPA+ CTC—P+mR+tR ATPA,+CTC,
ATPA+CIC,— R
*

*
*

[EIE R R ]

*
*

* -

S-procedure® ©]-43F el AW A7 DS 7] o

A AF Azl dE H, Aelr] AA &EE M
ATPB+C™D 0 0 0 0
AlpB+ClD 0 0 0 0

BTPB+D'D—¥I 0 0o - 0 0
* -RtR 0 - 0 0
. * o CRYRo D0
. . N —RYtR 0
* * * * — R+ R
(16)

where * means the symmetric term. Therefore,
when Z<0, #=0, the system (1) is quadratically

stable with an H., norm bound 7.

|
In Lemma 3, the sufficient condition for the He

control problem of discrete-time linear systems with
time-varying delays in states is presented. From this -
results, we can solve the problem designing the
linear memoryless state feedback control law such

_that the resulting closed loop system is quadratically

stable for the time-varying delay, and the H.. norm

of the closed loop system is bounded by given value
y. Therefore, we will design the H.. state feedback

controller using some changes of variables, Schur
complement, and S—procedure.
m. H,. State Feedback Control

Consider the
time-varying delays

discrete-time linear system with
in states described by the
difference delay equation

xW(k+1) =Ax(B)+ Ax(k—d(R)+ B,w(k) + B,ulk),
2(B) = Cx(k) + Cyx(k— d(B))+ D,,w(k) + D, ulk),

x(k) =0, V k<0,

a7

where x(B)e R” is the state, ke R” is the

control input, w(k)e R' is the exogenous input,
which belongs to 5[0, I, and z(ke R’ is the

controlled output. All

dimensions and we assume that all states are

matrices have appropriate

measurable for state feedback. the time-varying
delay (k)= R is the positive integer term satisfying
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(2).
We introduce the linear memoryless state feedback

control law

u(k) = Kx(k) 1®

such that the resulting closed loop system is
quadratically stable for time-varyving delay, and the
H.,, norm of the closed loop system is bounded by
given value 7.

When we apply the control (18) to the discrete
time~varying delays system (17), the closed loop
systemn from w(k) to z(k) is given by

x(k+1) = Agx(R)+ Agx(k— d(B) + B, uw(k),
2(k) = Cxx(B)+ Cyx(k— d(k))+ D, ulk),

where

AK =A+BuK,
(20)
Cy =C+D,K.

Therefore, we discuss the sufficient condition such
that the closed loop system is quadratically stable for
time-varying delay, and the H. norm of the closed

loop system is bounded by given value 7.

Theorem 1 : Consider the discrete time-varying delay
systemn (19), For given m>0, >0, and 0, if there
exist positive definite matrices @, S, and matrix M
such that

-Q @ Q 0 0 QAT+MTBT
* —m’l5 0 0 0 0
* +  —rls 9 0 0
* * = —771'8 9 iSAT
* * * * —)/2] BZ;
* * * * * -
* * * * * x*
* * * * * *
* * * * * *
QCT+M'DT 0 0
0 0 0
0 0 0
rlscl 0 0
Dy Q 0 <0,
0 0 0
-7 0 0
* -0, O (21)
* * —7lo,

Y
A

(99)

£/ % SCh B28 15

holds for the time-varying delay (2), then the closed
loop system (19) is quadratically stable with an H.,

norm bound 7. In here, some variables are defined

as follows:
Q=P
S =R
(22)
M=Kp!

0, =dag{S, S, -, S, S},

where the dimension of @, is mf(the upper bound

of time-varying delay) of the dimension of S.

Proof : Firstly, we define a Lyapunov functional as
(7). Taking the difference of the Lyapunov functional
(7) yields (9.

When assuming zero input, we have

IV(x, k)
x() T [AFPAx—P+mR+tR AFPAD
x(k— d(#)) * AIPA,— R
x(k—1) * *
= x(k—2) 0, * *
(= m+1) *
x(b— m) * *
0 0 0 0 x(k)
0 0 0 0 w(ke— d(R))
—~R+R 0 - 0 0 x(k—1)
* —R.+ R O O x(/e.—Z) <0,
* * o —RtR 0 ||xk—m+1)
* * . * — R+ R x(k—m)
(23)

which ensures the quadratic stability of the closed
loop system (19). In the next place, assume the zero
initial condition and introduce

J= B LARTAD-Pu®T ] @)
Noting

72 B BT 2 — DT wl+ A Vix, B, (25)

and further substituting (23) into (32) and let
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&R =[xBT x(k—dB)T Wk x(k—1)T
=27 o w(b=m+1)T 2(k—m)T7, (26)

then
E W OLZCY @)

where Z is defined

7}

s

A
ALPA+ CICxk— P+mR+ R ALPA;+ CiCy
* AlpAa+CEC,— R
* *
_ * *
- * *
* *
% *
ALPB,+CED, 0 0 0 0
AlPB,+CID, 0 0 0 0
BIPB,+DID,—7I 0 0 - 0 0
* ~R+zR 0 - 0 0
* *  —R+R - 0 0
* M * —R'+ R 0
* * * * —R+ R

(28)
where * means the symmetric term. Therefore,
when 2<0, k=0, the system (19) is quadratically
stable with an He. norm bound 7.

Using the lemma 1, Z<0 in (28) is transformed as

follows:

—P+mR+tR 0 0 AL Ck
* —R 0 A} cF
* « —4I B D
* *x = —Pl
* * * * -1
* * %* * !
* * * * %
* * * * ¢
\_ * * * * e
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 ¢
—R+ R 0 0 0 )
* —R+ R - 0 0
- : : : :
* * —R+1R 0 (29)
* * * —R+ 1R

(100)

<]

JAF A8 A)adel E H, A7) AA &8E

Using some changes of variables and nonsingular
matrices, the proof is completed. the inequality (290)
is equivalent to

-pt pt P! 0 0 P'AT+pP KBTI
+ —m R 0 0 0
* * - 1R7! 0 0 0
* * * —¢7IR7Y D IRTAT
* * * * —AI BT
* * * * * —p!
* * * * * *
* * * * * *
* * * * * *
. . . . . .
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
PIC"+PTK'D, 0 0 0
8 0 0 0 0
e 0 0 0 0
IR lCT
ron e 0 0 0 0
D, 0 0 0 0
0 0 0 0 0
—I 0 0 0 0
* -R' 0 0 0
* + —R'- 0 0
N e
* * * * —R'l
* * * * *
* * * * *
* * * ¥ *
* * * *
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
R! 0 0 0
0 R 0 0 <0. (30)
0 0 R 0
0 0 0 R™!
- R! 0 0 0
* — R 0 0
* * _ IRt 0
* * — r—lR—l

Using some changes of variables, (30) is changed
to (21).
|

(21) is an IMI form in terms of @, S, and M.
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Therefore, the H.. state feedback controller gain K

can be calculated from the M=KP ! after finding
the LMI solution, @, S, and M from the (21) and
(22). Using the LMI Toolbox, the solutions can be
easily obtained at a time because (21) is an LMI
form in terms of all variables™.

IV. Example

Consider the discrete time-varying delays system

e <[ 704 L[~ 8]

x(k—d(k)>+[0}4] w(k)+[8:g u(h),

(31)
z2(k) =[16]x(A+[0.1 0.6] x(£— d(£)
+2uw(k) + u(k),
We take m=5, y=5, and r=0.99. Using the

LMI toolbox, all solutions are obtained at the same
time as follows[8]:

p=[2300 5808
5.8808 37.5332]"

__70.0580 0.08988
R —[0.0898 2.5734]" (32)

M =[0.2807 —0.1125].

Therefore, the final H, state feedback controller
gain is obtained as

The simulation results are shown in Fig. 1. The
trajectories of states converge to zero as time goes
to infinity in (a) of Fig. 1. From this result, the
obtained controller stabilizes the discrete-time linear

—x

A,

56 - T T T 150
Time(k)

(@ x (k) and x(k)

(101)

£ SCHE £ 2% 17

0 50 100 LS
Time(k)

(b) u(k)

w(kandz (k)

" 00 150

Time(k)

(c) w(k) and z(k)

a(K)
© IS o
—
=
|
- .
P

»

Time(k)

(d) dk)
a3 1. Al Alel §lE, o R o™ A" &9, A
| Az e A
Fig. 1. The trajectories of states, control input,

exogenous input, controlled output, and
time-varying delay.

K=[-0.0159 —2.5720]. (33)

system against the time-varying delay and the
exogenous mput. And the trajectory of the control
input «(# is shown in (b) of Fig. 1. Also the H.



18 S-procedure o]-4-
norm bound of the closed loop system can be
calculated by the induced norm property between
w(k) and =z(k). Therefore, we investigate that the
value of 7 is less than given value( =5) in (¢) of
Fig. 1. Here, the initial values of states are zero and
the time-varying delay d(®) is shown in (d) of Fig.
1. And the value of w(%) is defined by

2, if 20<A<40,
w(k)=1-2, if 50<k<70, (34)
0, otherwise .

V. Conclusion

In this paper, we presented the sufficient condition
for the H. control problem of discrete-time linear
systems with time-varying delays in states and
design method of the H, state
feedback controller of discrete-time linear systems
with time-varying delays in states. The discrete

proposed the

time-varying delays system problems were solved on
the basis of LMI technique. Therefore the H. state
feedback controller was obtained and the obtained
controller guaranteed the quadratic stability and the
H., norm bound 7y of the closed loop system.
Whenever the parameter uncertainties exist in the
discrete time-varying delays systems, the approach
proposed in this paper can be easily applied to solve
them.
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