• Title/Summary/Keyword: linear standard model

Search Result 432, Processing Time 0.027 seconds

Bayesian inference in finite population sampling under measurement error model

  • Goo, You Mee;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1241-1247
    • /
    • 2012
  • The paper considers empirical Bayes (EB) and hierarchical Bayes (HB) predictors of the finite population mean under a linear regression model with measurement errors We discuss how to calculate the mean squared prediction errors of the EB predictors using jackknife methods and the posterior standard deviations of the HB predictors based on the Markov Chain Monte Carlo methods. A simulation study is provided to illustrate the results of the preceding sections and compare the performances of the proposed procedures.

Analysis on wind condition characteristics for an offshore structure design (해상풍력 구조물 설계를 위한 풍황 특성분석)

  • Seo, Hyun-Soo;Kyong, Nam-Ho;Vaas, Franz;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.262-267
    • /
    • 2008
  • The long-term wind data are reconstructed from the short-term meteorological data to design the 4 MW offshore wind park which will be constructed at Woljeong-ri, Jeju island, Korea. Using two MCP (Measure-Correlate-Predict) models, the relative deviation of wind speed and direction from two neighboring reference weather stations can be regressed at each azimuth sector. The validation of the present method is checked about linear and matrix MCP models for the sets of measured data, and the characteristic wind turbulence is estimated from the ninety-percent percentile of standard deviation in the probability distribution. Using the Gumbel's model, the extreme wind speed of fifty-year return period is predicted by the reconstructed long-term data. The predicted results of this analysis concerning turbulence intensity and extreme wind speed are used for the calculation of fatigue life and extreme load in the design procedure of wind turbine structures at offshore wind farms.

  • PDF

Numerical Study on Flow Field in the Cylinder of an Axisymmetric Engine (축대칭엔진 실린더 내의 유동장에 관한 수치해석적 연구)

  • 김영환;유정열;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.467-474
    • /
    • 1993
  • Viscous flow and heat transfer phenomena in an axisymmetric cylinder which models a diesel engine have been numerically studied. In order to search for a way to minimize numerical diffusion, the effectiveness and the appropriateness of two selected numerical schemes for convective terms in the governing equations have been tested. They are Linear Upwind Difference Scheme and Hybrid Scheme. Using a standard k-.epsilon. turbulence model, the calculation has been carried out basically up to 180.deg. of crank angle. As a result, it was shown from comparison with previous experimental data that Linear Upwind Difference Scheme is less influenced than Hybrid Scheme by the numerical diffusion and it was suggested that these effects of numerical diffusion can be more significant than those due to turbulence modeling.

External Force Control for Two Dimensional Contour Following ; Part 1. A Linear Control Approach

  • Park, Young-Chil;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.130-134
    • /
    • 1992
  • The ability of a robot system to comply to an environment via the control of tool-environment interaction force is of vital for the successful task accomplishment in many robot application. This paper presents the implementation of external force control for two dimensional contour following task using a commercial robot system. Force accommodation is used since a constraint imposed in our work is not to modify the commercial robot system. A linear, decoupled model of two dimensional contour following system in the discrete time domain is derived first. Then the experimental verification of linear control is obtained using a PUMA 560 manipulator with standard Unimation controller, Astek FS6-120A six axis wrist force sensor attached externally to the arm and LSI-11173 microcomputer. Experimentally obtained data shows that the RMS contact force error is 0.8246 N when following the straight edge and 2.3768 N when following 40 mm radius curved contour.

  • PDF

A Study on Feature Hierarchy in English (영어의 자질 수형도에 관한 연굴)

  • Lee Hae-Bong
    • MALSORI
    • /
    • no.29_30
    • /
    • pp.43-60
    • /
    • 1995
  • Standard generative phonologists assumed that there were no orders or hierarchies among distinctive features. This means that the distinctive features which make up a segment are independent and unordered. The unordered linear matrix cannot explain phonological phenomena such as complex segments as hierarchical representation does neatly. The hierarchical feature representation theory which embodies the concept of multi-tiered phonological representation organizes distinctive features in the appearance of hierarchical dominance. This paper aims to show how we can solve some problems of the linear feature representation. As regard underlying representation the theory of underspecification is discussed. I propose a feature hierarchy similar to that of Sagey(1986) but slightly different. I show English consonantal assimilation in feature hierarchical model compared with that of feature changing theory of linear representation.

  • PDF

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

Portable Piezoelectric Film-based Glove Sensor System for Detecting Internal Defects of Watermelon (수박 내부결함판정을 위한 휴대형 압전형 장갑 센서시스템)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Hak-Jin;Park, Jong-Min;Kato, Koro
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2008
  • Dynamic excitation and response analysis is an acceptable method to determine some of physical properties of agricultural product for quality evaluation. There is a difference in the internal viscoelasticity between sound and defective fruits due to the difference of geometric structures, thereby showing different vibration characteristics. This study was carried out to develop a portable piezoelectric film-based glove sensor system that can separate internally damaged watermelons from sound ones using an acoustic impulse response technique. Two piezoelectric sensors based on polyvinylidene fluoride (PVDF) films to measure an impact force and vibration response were separately mounted on each glove. Various signal parameters including number of peaks, energy ratio, standard deviation of peak to peak distance, zero-crossing rate, and integral value of peaks were examined to develop a regression-estimated model. When using SMLR (Stepwise Multiple Linear Regression) analysis in SAS, three parameters, i.e., zeros value, number of peaks, and standard deviation of peaks were selected as usable factors with a coefficient of determination ($r^2$) of 0.92 and a standard error of calibration (SEC) of 0.15. In the validation tests using twenty watermelon samples (sound 9, defective 11), the developed model provided good capability showing a classification accuracy of 95%.

ALTERATION MODELS TO PREDICT LACTATION CURVES FOR DAIRY COWS

  • Sudarwati, H.;Djoharjani, T.;Ibrahim, M.N.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.4
    • /
    • pp.365-368
    • /
    • 1995
  • Lactation curves of dairy cows were generated using three models, namely; incomplete gamma function (model 1), polynomial inverse function (model 2) and non-linear regression (model 3). Secondary milk yield data of 27 cows which had completed 6 lactations were used in this study. Milk yield records (once a week) throughout the lactation and from the first three months of lactation were fitted to the models. Estimation of total milk yield by model 3 using the data once a week throughout the lactation resulted in smaller % bias and standard error than those generated from model 1 and 2. But, model 2 was more accurate in predicting the 305-day milk yield equivalent closer to actual yields with smaller bias % and error using partial records up to 3 months. Also, model 2 was able to estimate the time to reach peak yield close to the actual data using partial records and model 2 could be used as a tool to advise farmers on appropriate feeding and management practices to be adopted.

A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis (다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구)

  • 김태철;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

The Use of Joint Hierarchical Generalized Linear Models: Application to Multivariate Longitudinal Data (결합 다단계 일반화 선형모형을 이용한 다변량 경시적 자료 분석)

  • Lee, Donghwan;Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.335-342
    • /
    • 2015
  • Joint hierarchical generalized linear models proposed by Molas et al. (2013) extend the simple longitudinal model into multiple models fitted jointly. It can easily handle the correlation of multivariate longitudinal data. In this paper, we apply this method to analyze KoGES cohort dataset. Fixed unknown parameters, random effects and variance components are estimated based on a standard framework of h-likelihood theory. Furthermore, based on the conditional Akaike information criterion the correlated covariance structure of random-effect model is selected rather than an independent structure.