• Title/Summary/Keyword: linear span

Search Result 272, Processing Time 0.027 seconds

Analysis of Linear Span of Non-linear Binary Sequences with Decimation d=2m-2(2m+3) (데시메이션이 d=2m-2(2m+3)인 비선형 이진수열의 선형스팬 분석)

  • Yim, Ji-Mi;Cho, Sung-Jin;Kim, Han-Doo;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.609-616
    • /
    • 2014
  • Large linear span makes difficult to predict, so this study is important to the security and code system. It has been studied about the non-linear binary sequences having low correlation values and large linear span. In this paper we analyze the linear span of $S^r_a(t)=Tr^m_1\{[Tr^n_m(a{\alpha}^t+{\alpha}^{dt})]^r\}$ ($a{\in}GF(2^m)$, $0{\leq}t{\leq}2^m-2$) where n=2m and $d=2^{m-2}(2^m+3)$.

A study on the cross-correlation function of extended Zeng sequences (확장 Zeng 수열의 상호상관 함숫값에 대한 연구)

  • Kim, Han-Doo;Cho, Sung-Jin;Kwon, Min-Jeong;An, Hyun-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • Spreading sequence is used for spreading spectrum in CDMA. For the purpose of minimizing multiple access interference and expanding linear span of the sequences, it is desirable to use such sequences with low correlation and high linear span. To obtain large family size and high linear span, the values of the correlation function of the sequences is more complex. In this paper, we propose the extended Zeng sequences with large family size and high linear span and analyze the correlation of the sequences.

Investigating the effects of span arrangements on DDBD-designed RC buildings under the skew seismic attack

  • Alimohammadi, Dariush;Abadi, Esmaeel Izadi Zaman
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.115-135
    • /
    • 2021
  • This paper focuses on examining the effects of span arrangements on displacement responses of plan-symmetric RC frame buildings designed using the direct displacement-based design (DDBD) method by employing non-linear analyses and the skew seismic attack. In order to show the desired performance of DDBD design approach, the force-based design approach is also used to examine the seismic performance of the selected structures. To realize this objective, 8-story buildings with different plans are selected. In addition, the dynamic behavior of the structures is evaluated by selecting 3, 7, and 12-story buildings. In order to perform non-linear analyses, OpenSees software is used for modeling buildings. Results of an experimental model are used to validate the analytical model implemented in OpenSees. The results of non-linear static and non-linear dynamic analyses indicate that changing span arrangements does not affect estimating the responses of structures designed using the DDBD approach, and the results are more or less the same. Next, in order to apply the earthquake in non-principle directions, DDBD structures, designed for one-way performance, are designed again for two-way performance. Time history analyses are performed under a set of artificial acceleration pairs, applied to structures at different angles. It is found that the mean maximum responses of earthquakes at all angles have very good agreement with the design-acceptable limits, while the response of buildings along the height direction has a relatively acceptable and uniform distribution. Meanwhile, changes in the span arrangements did not have a significant effect on displacement responses.

New decimations with 5-level cross-correlation and large linear span (5값 상호상관함숫값과 높은 선형스팬을 갖는 새로운 데시메이션들)

  • Kim, Jin-Gyoung;Cho, Song-Jin;Kim, Han-Doo;Choi, Un-Sook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.263-269
    • /
    • 2013
  • In this paper we give a proof for finding the values of the cross-correlation function $C_d({\tau})$, when $d=3{\cdot}2^m-2$ where n=2m, m=4k ($k{\geq}2$). And the linear span of the sequences in the proposed sequence family are derived in the some cases.

A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form. (B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬)

  • 김덕수;류중현;이현찬;신하용;장태범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

Ultimate behavior of long-span steel arch bridges

  • Cheng, Jin;Jiang, Jian-Jing;Xiao, Ru-Cheng;Xiang, Hai-Fan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.331-343
    • /
    • 2002
  • Because of the increasing span of arch bridges, ultimate capacity analysis recently becomes more focused both on design and construction. This paper investigates the static and ultimate behavior of a long-span steel arch bridge up to failure and evaluates the overall safety of the bridge. The example bridge is a long-span steel arch bridge with a 550 m-long central span under construction in Shanghai, China. This will be the longest central span of any arch bridge in the world. Ultimate behavior of the example bridge is investigated using three methods. Comparisons of the accuracy and reliability of the three methods are given. The effects of material nonlinearity of individual bridge element and distribution pattern of live load and initial lateral deflection of main arch ribs as well as yield stresses of material and changes of temperature on the ultimate load-carrying capacity of the bridge have been studied. The results show that the distribution pattern of live load and yield stresses of material have important effects on bridge behavior. The critical load analyses based on the linear buckling method and geometrically nonlinear buckling method considerably overestimate the load-carrying capacity of the bridge. The ultimate load-carrying capacity analysis and overall safety evaluation of a long-span steel arch bridge should be based on the geometrically and materially nonlinear buckling method. Finally, the in-plane failure mechanism of long-span steel arch bridges is explained by tracing the spread of plastic zones.

Near-Optimal Parameters of Three Span Continuous Beams subjected to a Moving Load (이동하중이 작용하는 3경간 연속보의 근사 최적제원)

  • 이병규;오상진;모정만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.139-146
    • /
    • 1997
  • The main purpose of this paper is to investigate the near-optimal parameters of continuous beam subject to a moving load. The computer-aided optimization technique is used to obtain the near-optimal parameters. The computer program is developed to obtain the natural frequency parameters and the forced vibration responses to a transit point load for the continuous beam with variable support spacing, mass and stiffness. The optimization function to describe the design efficiency is defined as a linear combination of four dimensionless span characteristics: the maximum dynamic stress; the stress difference between span segments; the rms deflection under the transit point load; and the total span mass. Studies of three span beams show that the beam with near-optimal parameters can improve design efficiency by 12 to 24 percent when compared to a reference configuration beams of the same total span length.

  • PDF

A Study on the Vibration Characteristics of Multi-span Beams (멀티스팬 빔의 진동특성에 관한 연구)

  • 홍진선
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.856-861
    • /
    • 1998
  • Several reactor system components, such as heat exchange tubes, fuel fins, controlrods, and various instruments are beam-like components. This study presents a simple solution method for calculating the natural frequencies and modes of beams supported by linear and torsional springs and attached concentrated mass and rotational inertia at some intermediate points. For a general multi-span beam, theoretical method is proposed to analyze the exact solution about vibrational characteristics with respect to the nondimensional parameters. And the results obtained using the numerical models are presented and discussed.

  • PDF

Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

  • Sun, Yanguo;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.565-587
    • /
    • 2013
  • Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

Compensation for the Distorted WDM Channels in Dispersion-managed Links with the Linearly/Nonlinearly Increment/Decrement of Adjacent RDPSs Between the Fiber Spans (인접 광 중계 구간 사이의 RDPS가 선형적/비선형적으로 증가/감소하는 분산 제어 링크에서의 왜곡된 WDM 채널 보상 효과)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.940-941
    • /
    • 2016
  • The compensation effects of the distroted WDM channels in dispersion-managed optical links with the linear/nonlinear increments/decrements of adjacent residual dispersions per span (RDPSs) as the numer of fiber span is more increased are evaluated through numerical simulation.

  • PDF