인접 광 중계 구간 사이의 RDPS가 선형적/비선형적으로 증가/감소하는 분산 제어 링크에서의 왜곡된 WDM 채널 보상 효과

이성렬*

*목포해양대학교

Compensation for the Distorted WDM Channels in Dispersion-managed Links with the Linearly/Nonlinearly Increment/Decrement of Adjacent RDPSs Between the Fiber Spans

Seong-Real Lee*

^{*}Mokpo National Maritime University

E-mail : reallee@mmu.ac.kr

요 약

분산 제어가 적용된 광전송 링크에서 각 중계 구간 당 잉여 분산의 크기가 중계 구간 수가 증가 할수록 선형 (또는 비선형)적으로 점차 증가 (또는 감소)하는 경우에서의 왜곡된 WDM 채널의 보상 정도를 시뮬레이션을 통해 살펴보았다.

ABSTRACT

The compensation effects of the distroted WDM channels in dispersion-managed optical links with the linear/nonlinear increments/decrements of adjacent residual dispersions per span (RDPSs) as the numer of fiber span is more increased are evaluated through numerical simulation.

키워드

Dispersion Management, Optical Phase Conjugator, Residual dispersion per span, Net residual dispersion, Linear(Nonlinear) Increment(Decrement) of RDPS.

Ⅰ.서 론

대용량 정보의 전송과 장거리 전송을 가능하게 하는 분산 제어 (DM; dispersion management)[1] 와 광 위상 공액 (optical phase conjugation)[2]이 결합된 기술이 적용된 링크에서 각 중계 구간 (fiber spans) 당 잉여 분산 (RDPS; residual dispersion per span)의 크기가 중계 구간 수가 증가할수록 선형 (또는 비선형)적으로 점차 증가 (또는 감소)하는 경우에서의 왜곡된 WDM 채널 의 보상 정도를 시뮬레이션을 통해 살펴본다.

Ⅱ. 광전송 링크와 시스템의 모델링

그림 1은 본 연구에서 살펴보고자 하는 OPC와 DM이 적용된 광전송 링크와 WDM 전송 시스템 의 구조를 나타낸 것이다. 전송 링크는 전체 전송 거리의 중간에 있는 OPC를 중심으로 전반 구획 (former half section)과 후반 구획 (latter half section) 각각 n개의 중계 구간으로 구성된다. 인 번 중계 구간 사이의 RDPS 크기의 증가/감소 증 분이 선형적인 경우 n = 64이고 비선현적인 경우 n = 52로 하였다. 중계 구간을 구성하는 단일 모 드 광섬유 (SMF; single mode fiber)의 손실 계수 α_{SMF} 는 0.2 dB/km, 비선형 계수 γ_{SMF} 는 1.35 W^{-1} km^{-1} (@1,550 nm), 분산 계수 D_{SMF} 는 17 ps/nm/km(@ 1,550 nm)로 동일하게 모델링하였 다. 분산 제어 광섬유 (DCF; dispersion compensating fiber)의 손실 계수 α_{DCF} 는 0.6 dB/km, 비선형 계수 γ_{DCF} 는 5.06 $W^{-1}km^{-1}$ (@1,550 nm)로 모든 중계 구간에 대해 동일하게 하였고, 분산 계수 D_{DCF}는 -100 ps/nm/km로 하 였다.

그림 1. 광전송 링크와 WDM 시스템의 구성

각각의 전송 반 구획의 m (=n/2)개의 RDPS 분포는 선형적 증분의 경우 중계 구간이 증가할 수록 ±10 ps/nm로 즉 0부터 ±10, ±30, ±60, $\pm 100, \ \pm 150, \ \pm 210, \ \pm 280, \ \pm 360, \ \pm 450, \ \pm 550, \ \pm 660,$ ±780, ±910, ±1050, ±1200 ps/nm까지 점진적 증 distribution), 가 (ascending 또는 감소 (descending distribution)하도록 구성하였고, 비선 형적 증분의 경우 중계 구간이 증가할수록 ±10*(1.5^m) ps/nm (여기서 m = 1,2,3,---,12). 즉 0부터, ±10, ±20, ±30, ±50, ±70, ±110, ±170, ±250, ±380, ±570, ±860, ±1290까지 점진적 증가 또는 감소 (descending distribution)하도록 구성 하였다.

OPC를 중심으로 한 전반 전송 구획과 후반 전 송 구획의 선형/비선형 점진적 증가/감소의 조합 은 각각 2가지씩으로 모델링하였다. 즉 선형과 비 선형 모두 전반 전송 구획에서의 RDPS 분포는 점진적 증가, 후반 전송 구획에서는 점진적 감소 (이를 'AD' 분포라 함)한 경우와 전반 전송 구획 에서의 RDPS 분포는 점진적 감소, 후반 전송 구 획에서는 점진적 증가 (이를 'DA' 분포라 함)한 경우의 2가지로 모델링하였다.

Ⅲ. 시뮬레이션 결과 및 검토

그림 2는 제안한 4가지 구조의 전송 링크를 통 해 보상된 WDM 채널의 눈 열림 패널티 (EOP; eye opening penalty)를 가지고 얻은 입사 전력에 따른 유효 전체 잉여 분산 (NRD; net residual dispersion) 범위를 나타낸 것이다. 여기서 유효 NRD 범위는 2개의 WDM 채널 중 수신 성능이 최악인 채널의 EOP가 1 dB 이하가 되는 NRD 범위로 정의된다. 그리고 그림 2에 총 6개의 유효 NRD 범위를 나타냈는데, 성능 비교를 위해 본 연구에서 제안한 4가지 구조 외에 모든 중계 구 간의 RDPS가 0 ps/nm로 일정한 균일 분포 (uniform distribution) 링크에서의 유효 NRD 범 위를 추가적으로 나타낸 것이다.

인접 중계 구간 사이의 RDPS 증분이 선형, 비 선형으로 변화하는 2가지 경우 모두 균일 분포의 전송 링크보다 유효 NRD 범위를 갖는 최대 입사 전력의 크기는 줄어들지만 유효 NRD의 폭에 있 어서는 RDPS의 분포를 'DA', 즉 반 전송 구획에 서의 RDPS 분포는 점진적 감소, 후반 전송 구획 에서는 점진적 증가시킨 경우가 가정 우수하다는 것을 확인할 수 있다. 즉 전송 링크를 구성하는 각 중계 구간의 RDPS를 균일하게 분포시키는 구 조보다 중계 구간이 증가할수록 RDPS 크기를 전 반 전송 구획에서는 선형/비선형적으로 점차 감 소시키고, 동시에 후반 전송 구획에서는 점진적으 로 증가시키는 구조가 링크 설계 면에서 융통적 이라는 것을 확인할 수 있다.

참고문헌

- [1] X. Xiao, S. Gao, Y. Tian, and C. Yang, "Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems," *J. Lightwave Technol.*, Vol. 24, No. 5, pp. 2038~2044, 2006.
- [2] S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation", *J. Lightwave Technol.*, Vol. 14, No. 3, pp 243 ~248, 1996.