• Title/Summary/Keyword: linear quadratic control

Search Result 531, Processing Time 0.025 seconds

Hybrid Technique for Active Vibration Control of Plate using Piezoceramic Actuators/Sensors (압전 작동기/감지기를 이용한 평판의 혼합형 능동 진동제어 기술)

  • Kim, Yeung-Sik;Lee, Chul;Kim, In-Soo
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1048-1058
    • /
    • 2000
  • Thipaper presents a methodology to suppress the vibration of thin rectangular plate clamped all edges using piezo-ceramic material as actuators and sensors. Dynamic characteristics of the structure bonded with distributed actuators/sensors are identified by the Multi-Input Multi-Output (MIMO) frequency domain modeling technique based on the experimental data. Hybrid control scheme is adopted and feedback controller is designed by LQG(Linear Quadratic Gaussian). Feedforward controller is adapted by multiple filtered -$x$ LMS(least mean square) algorithm. Experiment result demonstrates the effective reduction of the vibration label for both the transient and persistent external disturbances.

  • PDF

Design of Robust Power System Stabilizers Using Disturbance Rejection Method (외란 소거법을 이용한 강인한 전력 계통 안정화 장치 설계)

  • Kim, Do-Woo;Yun, Gi-Gab;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1195-1199
    • /
    • 1998
  • In this paper a design method of robust power system stabilizers is proposed by means of robust linear quadratic regulator design technique under power system's operating condition change, which is caused by inner structure uncertainties and disturbances into a power system. It is assumed that the uncertainties present in the system are modeled as one equivalent signal. In this connections an optimal LQR control input for disturbance rejection, the output feedback gain for eliminating the disturbance are calculated. In this case. PSS input signal is obtained on the basis of weighted ${\Delta}P_e$ and $\Delta\omega$. In order to stabilize the overall control of system. Pole placement algorithm is applied in addition. making the poles of the closed loop system to move into a stable region in the complex plane. Some simulations have been conducted to verify the feasibility of the proposed control method on a machine to infinite bus power system. From the simulation results validation of the proposed method could be achieved by comparisons with the conventional PSS with phase lag-lead compensation.

  • PDF

A Study on the Relaxed Stability of Fuzzy Control Systems (퍼지 제어 시스템의 완화된 안정조건에 관한 연구)

  • Kim, Eun-Tae;Lee, Chang-Hun;Park, Min-Yong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.11-18
    • /
    • 2000
  • In this paper, we propose a new condition to test the quadratic stability of fuzzy control systems. The Proposed one enlarges the class of fuzzy control systems whose stability is ensured by representing the interactions among the fuzzy subsystems in a single power matrix and solving it by LMI (linear matrix inequality). Compared with the previous methods, the proposed one relaxes the stability condition to release the conservatism. Finally, the relationship between the suggested condition and the conventional well-known stability conditions reported in the previous literatures is discussed and it is shown in a rigorous manner that the proposed one includes the conventional conditions.

  • PDF

A Temperature Control of Thermal Power Plant Superheater System using Iterative Method (반복적 방법을 이용한 화력발전소 과열기 시스템의 온도제어)

  • Sang-Hyuk Lee;Ju-Sik Kim
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 1999
  • In this paper, we construct the controller for the heat exchanger system using iterative method. For awlying the linear quadratic control theory to the heat exchanger system which is represented by the bilinear system, we fomrulate the bilinear system to execute iteration We also propose Extended Kalman Filter to estimate bilinear system state for the purpose of state feedback controller design. We also awly the iterative controller to the thennal power plant superheater system temperature control, and computer simulation show that the estimated value follows the superheater steam temperature under the variation of the external inputs, and that the output steam temperature is properly maintained.tained.

  • PDF

A Study on Passive Homing Trajectory for Maximizing Target Information (표적 정보량을 최대화하는 피동 호밍궤적에 관한 고찰)

  • Ra, Won-Sang;Shin, Hyo-Sang;Jung, Bo-Young;Whang, Ick-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.172-181
    • /
    • 2019
  • This paper deals with the problem of generating the energy optimal trajectory which is intended to enhance the target tracking performance of a passive homing missile. Noticing that the essence of passive target tracking is the range estimation problem, the target information gathered by passive measurements can be readily analyzed by introducing the range estimator designed in line-of-sight(LOS) frame. Moreover, for the linear filter structure of the suggested range estimator, the cost function associated with the target information is clearly expressed as a function of the line-of-sight rate. Based on this idea, the optimal missile trajectory maximizing the target information is obtained by solving the saddle point problem for an indefinite quadratic cost which consists of the target information and the energy. It is shown that, different from the previous heuristic approaches, the guidance command producing the optimal passive homing trajectory is produced by the modified proportional navigation guidance law whose navigation constant is determined by the weighting coefficient for target information cost.

Epidemiological application of the cycle threshold value of RT-PCR for estimating infection period in cases of SARS-CoV-2

  • Soonjong Bae;Jong-Myon Bae
    • Journal of Medicine and Life Science
    • /
    • v.20 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Epidemiological control of coronavirus disease 2019 (COVID-19) is needed to estimate the infection period of confirmed cases and identify potential cases. The present study, targeting confirmed cases for which the time of COVID-19 symptom onset was disclosed, aimed to investigate the relationship between intervals (day) from symptom onset to testing the cycle threshold (CT) values of real-time reverse transcription-polymerase chain reaction. Of the COVID-19 confirmed cases, those for which the date of suspected symptom onset in the epidemiological investigation was specifically disclosed were included in this study. Interval was defined as the number of days from symptom onset (as disclosed by the patient) to specimen collection for testing. A locally weighted regression smoothing (LOWESS) curve was applied, with intervals as explanatory variables and CT values (CTR for RdRp gene and CTE for E gene) as outcome variables. After finding its non-linear relationship, a polynomial regression model was applied to estimate the 95% confidence interval values of CTR and CTE by interval. The application of LOWESS in 331 patients identified a U-shaped curve relationship between the CTR and CTE values according to the number of interval days, and both CTR and CTE satisfied the quadratic model for interval days. Active application of these results to epidemiological investigations would minimize the chance of failing to identify individuals who are in contact with COVID-19 confirmed cases, thereby reducing the potential transmission of the virus to local communities.

Frequency Domain Properties of EALQR with Indefinite Weighting Matrix

  • Seo, Young-Bong;Park, Jae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.329-335
    • /
    • 2003
  • EALQR (Linear Quadratic Regulate. design with Eigenstructure Assignment capability) has the capability of exact assignment of eigenstructure with the guaranteed margins of the LQR for MIMO (Multi-Input Multi-Output) systems. However, EALQR undergoes a restriction on the state-weighting matrix Q in LQR to be indefinite with respect to the region of allowable closedloop eigenvalues. The definiteness of the weighting matrix is closely related to the robustness property of a given system. In this paper, we derive a relation between the indefinite weighting matrix Q and the robustness property for EALQR. The modified frequency domain inequality, that could be guaranteed by EQLQR with an indefinite weighting matrix, is presented.

연계(連繫)된 전력계통(電力系統)의 최적(最適) 부하주파수(負荷周波數) 제어(制御)

  • Han, Man-Chun;Jang, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.119-120
    • /
    • 1979
  • A linear state equation of the first order differential form relating the load-frequency dynamic characteristics of interconnected power systems was derived for use in computer simulation. A now solution of the algebraic matrix riccati equation for application in quadratic optimal controllor and least-square state estimator dermination was developed. The program for a dynamic state equation for two interconnected control areas was developed. The optimized load-frequency deviation was analysed and a numerical analysis was tried based on the computer simulation. It was shown that the dynamic response of th loed-frequency could be optimized with weighting factors IR and Q. The result was that the load-frequency and the tie-line deviation were visibly reduced.

  • PDF

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

An Extended Robust $H_{\infty}$ Filter for Nonlinear Constrained Uncertain System

  • Seo, Jae-Won;Yu, Myeong-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.565-569
    • /
    • 2003
  • In this paper, a robust filter is proposed to effectively estimate the system states in the case where system model uncertainties as well as disturbances are present. The proposed robust filter is constructed based on the linear approximation methods for a general nonlinear uncertain system with an integral quadratic constraint. We also derive the important characteristic of the proposed filter, a modified $H_{\infty}$ performance index. Analysis results show that the proposed filter has robustness against disturbances, such as process and measurement noises, and against parameter uncertainties. Simulation results show that the proposed filter effectively improves the performance.

  • PDF