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Abstract

In this paper, we construct the controller for the heat exchanger system using iterative method. For
applying the linear quadratic control theory to the heat exchanger system which is represented by the
bilinear system, we formulate the bilinear system to execute iteration. We also propose Extended Kalman
Filter to estimate bilinear system state for the purpose of state feedback controller design. We also apply
the iterative controller to the thermal power plant superheater system temperature control, and computer
simulation show that the estimated value follows the superheater steam terrperature under the variation of
the external inputs, and that the output steam temperature is properly maintained.

1. Introduction bilinear system in thermal power plant. The design

This paper consider the problems of steam
temperature control of a superheater system with a
desuperheater. Among the heat exchanger systems,
the superheater system is represented by the
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problem of controllers for bilinear system has been
studied by many authors[1-3]. Most of the obtained
results rely on optimization theory, either using
quadratic cost criteria or criteria linear in control,
specially through the application of Pontryagin’s
principle  leading to bang-bang control or
minimizing control time. Cebuhar and Costanza
proposed the approximation procedure to show that
a wide class of optimal control problems can be
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solved for bilinear systems and to explore the ways
for practical implementation of these solutions[1].
However, obtaining the optimal solution was not
easy because of the nonlinearity
system[34].

Hence, to solve these bilinear system control
problems, feedback controllers need for more
specific consideration. For the purpose of obtaining
the optimal solution in quadratic control, it is
required to use closely related Riccati approach mn
linear quadratic optimization. Hence using the
results of Hofer and Tibken's approach, the
feedback controller with the iterative method for the
bilinear systemns control is derived and the proposed
iterative controller is applied to the problem of
superheater steamn temperature control. Whereas
Hofer and Tibken considered regulating problem,
we formulate the iterative method into the tracking
problem.

In the next section, bilinear system variables are
defined in order to utilize Riccati equation. We also
propose iterative algorithm to obtain the controller
for the heat exchanger system Using these
algorithm, we construct bilinear tracking controller.
In Section 3, superheater system which is
containing deterministic and stochastic disturbance
is introduced. Extended Kalman Filter is also
proposed. Using Extended Kalman Filter, system
variables can be estimated In Section 4,
discussions and simulation are represented. Some
conclusions follow in Section 5. As is customary,
let R "™ denote #nxm real variables.

in bilinear

2. Bilinear Quadratic System

2.1. System variable construction
Consider a particular kind of bilinear system
with known disturbance:
(D = Ax(D+ Bu(t) +<{ ON> u( ) + DE(H) o)
¥ =Cx(8) 2
where x(HeR”, u(HesR™ yHeR” and &HeR’
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are the state varables, the input variables, the
output variables and the known disturbance vectors,
respectively;

AeR n/n, BeR n/m’ Ce Rﬂ", DeR n/ay

<x(t)N>E§'1x,-(t)N,-, NeR™™ j=1,-n.

To keep an outlet steam temperature »(1) close to
v.s oOver a specified time interval [0,#], the
quadratic cost functional is given by

J= 5 (CHEY = 3,0) THCH) = 3,0

4
+ 5 UKD =5, )THEHD = 30) B
+ u(8) TRu( )dt

where ¢ is the final time, P and @ are rxr

positive-semidefinite symmetric matrices, and R is

an mXxXm positive-definite symmetric matrix.
Hamiltonian of the problem is defined by

H(x, 2, )= 5 ((Cx{ D)= 3,6) TUCH D = ¥,

+ () TRu( ) + ) LA + <x(ON>u()  (4)
+ Bu(d + DE(D)

The necessary optimal condition is obtained by

OH _
ou =0

and the optimal control «’(# is

W) = — R UBHON) (D 6)
Costate variable p(# satisfies

68H _ _ T

=" P ®)

(5) and (6) are Euler-Lagrange equations, giving
necessary conditions for z'(# to minimize J.
The state equation is dertved from (1)
() =[Ax(0],~ [(B+<x(ON)) R™ 7
(BH<x(DN) YD), + [ DED];
and the boundary is restricted to x(0)
Executing (6) and taking into account (5), the
costate equation is
A0 =—1CTQCH N, - [ATH(H];
+5 57N R (BN ®
+(BHH(ON) BINIp(H+ 3,1 CTQ),

Journal of KIEE, Vol. 13, No.4, November 1399



2A) = [CTPCH)); = 3, ACTP);, i=1,",n
where [-]; is the i-th row of the associated
vector.

In order to stay in close proximity to the Riccati

approach{2], state and costate equations are
rewritten as follows
x(t) = A — BR™'BT5) + DEt) ©
HOy=— () — ATp() + y,,CTQ (10)

with boundaries restricted to x(0) and
K )= CTPCH ) — y,, CTP.

The time-varying matrices A=[a;], @=I[g;]
and BR™'B” denote
= a;— 51N, B 'BT+ BR NI o), an
7;=[CTQCl;—5 (9 (12)

(N; R'NT+ N, R'NDp(H)

BR'BT-Lad B'BT+BR DD (g3

=(B+<xN») B (B+<aW) T
a; and g; are the i-th row and j-th column
element of matrix A and @, respectively.

The above problems are called two-point
boundary-value problems, and they are sometimes
rather difficult to solve, even with a high speed
computer. Notice that the two equations (9) and
(10) are coupled since u(#) depends on (9
through (5). Now, we express «(f) as a
combination of a linear state variable feedback plus
a term depending on y,,C7P. Looking at the
boundary restriction p(#), it seems reasonable to
assurme

o) =S(Ox(8) ~ y,,CTP, foral t<t (14)
where S(#) is the unknown auxiliary sequence.
Using (14), state equation (7) becomes

H=(A~ BR ' BIS()Hx(H as)
+ v,4B R BTCTP+ DD
Next equation is induced by differentiating (14)

(= S(Ox()+ S(H x () _
= $S(HD+S)(Ax(D) ~ B R BT(S(Hx(p  (16)
~ ¥,4C"P) + DE(S)

Now, taking into account the costate equation (10),
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we obtain the relation

- $(0=S(0A+ ATS(s) a7

~S(OVBR' B's(v+ 0
0=y A CTP~3,,SWBR" B'CP 1)
~ S(ODE(D) + y,,CTQ

(17) is a matrix Riccati equation, and if S(9 is its
solution with final condition S(#), then (14) holds
for all t<t’. Since the matrix sequence S(8) is
independent of the state trajectory, the Riccati
equation can be solved off-line, and S(9 can be
stored.
Then, the optimal tracking control becomes

ud=— R (B+ <x(DN) (D) (19)
== R '(B+ (D) (S(Dx() — 3,,CTP)

and the values of S(#) and x(f) are calculated
using the relations of (15) and (17)

2.2. lterative Method

We notice that A(H) and ¢ are the
functions of the costate #( and BR 'BNH is
the function of state x(#. Hence we denote the
iteration index (/) by a superscript. For the
brevity of the notations, iteration sequences are
simplified into

A= 3”0, = 2"
and B2 ()R B'GP (=B R BV (1.
Then the iterative solutions of the state and costate
equations are obtained from the following equation

J““+U(t)= A(/)x(ﬂl)(t) , p Z))
— BY R BY 0000y + pacy

- (j+1) _ G G+1) _ AT, G+1)
» (ﬁ—+y%c§a (H— A" pUtD(p @1

and the boundaries are restricted to xY*Y(0) and
PPy = CTBCxY* (¢ — 3, CTP.

We conclude that (20) and (21) are linear time
varying system for each iteration step. Hence our
problem is to solve the linear time varying system
using the Riccati formalism. With the definition of

(1), the solutions of (20) and (21) can be derived
from
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_ S(iﬂ)(t): A(/)Ts(i+1)(t)+s(,'+1)(t) A(D

~S“(')”(t) B(') ﬁ*l B(l)Ts(f+l)(t) (22)
+ Q7
)-C(i+1) ()= A(l)x(j+l)(t)._ B(l) 'I—a—l BT(:)
. S(’“)(t)x(’“)(t) (23)

+3,4 B? R B™V CTP + DED)

where boundary restrictions are PY*V(¢) = CTPC
and x9(0).

Now we introduce the successive approximation
approach[b]. Aganovic and Gajic have developed an
optimization algorithm, which is based on the
application of the method of successive approxi-
mations to the approximative procedure presented in
Hofer and Tibken[2]. Applying the procedures of
Aganovic and Gajic, (20) and (21) correspond to
the following linear quadratic time-varying control
problem

(= A%+ B w0 + De()
](m):jZL(Cxum(tf)*ym/)rp(cxuu)(t/)_yw)

4 . .
+ %j{; ((Cx(lﬂ)(t) _y"j)'l'()(cx(ﬁl)(t)_ym/)
+ 1)UV RO at

The application of the successive approximation
technique to the above equation results[5]

Z9D (= (A9 = O PO U1 (24)
+yij(’)CTf’+ Do)

From the results of Aganovic and Gajicld], (22) is
replaced by
P(}+1) (H+ sz(j)P(j+ D(f) +P(i+ 1)(,) z(/) (%)
+Q”=0
where a(ﬂ= Q9+ P(/)Bmp(f)’ X(’)
A%9=4%@, 2V (=0" ),
B(D T?_l B’I‘(j)(t)= B(l’)(t)'
For each iteration, the optimal feedback controller
is given by

- j 0
__A(/)_B /P(l)'

u(i+l)(t)=_ —RS—I(B_'F <x(i+l)(t)N>)T
. (P(i)(t)x(ﬁl)(t)_ymchI__))
where matrix PU*P(9) is calculated from the

Lyapunov equation (25). Hence we confirm that in
the bilinear quadratic case the Lyapunov matrix

50 (438)

depends on the initial state x®(0) in contrast to
the linear quadratic problem. This point seems to
be natural because of the nonlinearity of the
bilinear system.

For the first iteration j=0, initial values of the
state variables and the costate variables are
required to calculate matrices A, 2 and

BY B! BYT. Hence, we consider the linear
part of the bilinear system (1)

()= Ax(H + Bu(t) + DED .

Then, the matrices A, Q© and B are
calculated by using the solution of

O ()=(A-B R BTP®) 0y
+ ¥, B R 'BTCTP+ DE()

and the boundary restriction is to x(0),
PO (H+APO(H+ POHA+Q=0,
POy = CTPC.

With @) =PO>)xO(p) — 9,,CTP,
#O()=— R'BTpO(p

is represented.

From the next iteration steps, AY, QY and BY

are calculated by using the solution of

970 (9= (A9 - B9 R BOTPOYRUI(p
+3,4B? RT'BY'CTP+ D&()

’

P<i+l)(,)+A1mP(i+1)(,)+P(;+n(t)A(l)+ Z’m=0
where boundary are restricted to

POy = cTPC and x0(0)
‘Then, the control law is given by

u(i+l)(t)=_ —I—?__l B+ (x(i+l)(t)N>)T
. (P(J+1 (t)x(’“)(t)—-y,,,CTf’) .

If the iteration difference of «?() and =Y V(®
has the lower value than the predefined bound, the
iteration in this step is terminated.

3. Superheater Modelling and
Construction of Extended
Kalman Filter

T, - metal temperature (C)
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T : steam temperature (T
T, : inlet steam temperature (C)
T, . outlet stearn temperature (T)
T, - spray water temperature (c)
H; ' inlet steam enthalpy (kcall kg)
H, : outlet steam enthalpy (kcall kg)
w;  inlet steam mass flow rate (kgl s)
w, - outlet steam mass flow rate (kgf s)
wy 1 Spray water mass rate (kgls)
Q. ° heat input rate from flue gas to metal
(kcalls)
Q.. - heat input rate from metal to steam
(kcalls)
V, © volume of each segment (m?)
o : steam density (kg/m®)
C, * superheated steamn heat capacitance
(kcall kg T)
C,; © spray water heat capacitance (kcal/kgT)
C.. - superheater tube heat capacitance
(kcallkgT)
@, - heat transfer rate from metal to steam
(kcall m*sT)
@ * heat transfer rate from gas to metal
(kcal/ m?sT)
M, : mass of superheater tube (kg)
S, : external heating surface (m?)
S, © internal heating surface (m?)

In the operation of a power plant superheater,
exacting demands are made on the steam
temmperature  maintenance at the outlet. For
temperature control at the outlet of a superheater,
the relevant system state is the temperature pattemn
along the superheater tube. This is described by a
distributed-parameter system, which involves an
infinite number of state variables. To derive a
simplified model for control purposes, the
superheater is divided into segments, and a lumped
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model is derived, which represents a finite number
of intermediate temperatures.

In the interest of simplicity in practical
implementation, the observer is constructed based
on the lumped model with fewer segments than the
superheater model described above.

To describe the distributed parameter nature of
the superheater accurately, the superheater is
divided into many segments. Each segment is taken
as a control volume to be approximated as a
simplified single capacitance. Using the control
volume approach, a lumped model for each segment
is derived as shown in Fig. 1. The steam and the
flue gas are separated by a metal tube, which
forms a heat-exchange surface.

metal T,
H;, T;, w; . H,, T,, w,
fluid T
= (steamn) =
je— L T .;(_),

flue gas direction = T Q,,

81, gus) 22
Fig.1. Heat exchanger model

Recall that if the velocity of a compressible flow
is sufficiently slower than the speed of sound, the
flow may be approximated as an incom- pressible
one, and consequently dpo/dt = 0. Since the velocity
of the steam in the superheater is considerably
slower than the sound in the power plant boiler,
the approximation can be adopted, and as a
consequence, the density of the steam can be
excluded from the states. Therefore w,=w, is

derived. Assuming that the pressure inside the tube
is constant, the enthalpy of the stearn satisfies the
dH = C,dT, where C, is the
constant-pressure specific heat. Hence, we conclude
that the heat supplied to the following fluid(steam)
only increases its enthalpy, dH=dQ, where @
denotes the heat. In the above equations, it is
assumed that convection is the exclusive heat

relation
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transfer mode for the superheater. Hence the heat
transfer Q.. and Q.. are expressed in terms of
the heat transfer rates «,, and @, and heating
surface S:

AmSUTw(L, O~ T, 1)) = Qp (26)

AemSATg(L, D~ TW(l, D)) = Qgn @27

It is also assumed that the heat transfer rates
gm and a. are constants.

Now, to simulate the profile of superheated
steamn precisely, it is necessary to divide the
superheater into » segments as shown in Fig. 2.

wy, Td, CM
de[i rheater
> ->
Wi, Ti 7‘l T2 o Tn—l Tn Wo, Ta
Tml TnQ R T»m—l Tnnr
Txl T82 Tﬂn—l Tzn
ad 2. igd| 2a
Fig. 2. Partition of a superheater

In the first segment, the desuperheater is
included and system is modified as follows:

dx
V,pCﬁ—l# =C,Taw;— Cylw,;+ wx, (2B)
+ a,,,,Sl(zl - xl) + CMwad

dz

M,,,C,,,—dt— = o So( Ty —2) —aSi1{z2,—2;) (29

where x={[x, %, -, 2, ] 7 =[Ty, T2, -, T\]7 and
Z=[21, Z3, ", Z,,] T=[ Tml» Tmz- e Tmn] T-
In the kth segment, £=2,--, n, yield

V,oc,% = Clw;+ wHxs—1~ 1)) + @ peS1{ 24— 2 (30)
dz
Mmcm—gf‘ = a’gmsz( Tg ~21)_amsl(2k_xt) (3D

To derive a model for the construction of the
observer, the superheater is divided into v

52 (440)

segments. Regarding the metal temperatures  z,,
k=1, ,v, as unknown inputs T,,, k=1, v.

After these processes,
dx
VspC,,Tt1 == Cylwi+ wx, + @pmSo( Ty — 1) (32)
+ C,,T,»w,»+ CMTde
and in the kth segment, £=2, -, v,

V;PC,% =Clw;+ wadXpm 1~ 28) + @S2 T — 1) (33)

2()=[ A+ (DA + 2 DA, )(8) 34)
+[Bo+q1(t)Bl]u( t) + DU({)

Where E(t)=w,-, T)(t) = [Tml T,,,z‘ < T,,W]T,
2(D=wy, a(D=T:, WlD=[w,; w]".

The matrices are given by

Ay=dingla, ay, ....., al,
—ap 0 0
a; —a, 0
e L
0 e 0 a; —ay 0
0 e e es ﬂz ——-az

1 B 1" p_100017 5__5
Bo=[g o o) - B 1 | D=,
Bu=1b 0 01",Bp=10b0-0]T

where

AmsSy

o= gy —d p = CnTa
1 V,pc,,’ 2 VSP’

b1= VSPCI, R b2= as.

Discrete equation of (34) is illustrated by

x(k+1) = Ax(%) + Bu( k) +<x(B)N> 2u( k) + D(B) (3D)
where By=[5,0 = 017, Bp=[a, 0 - 0]7,

A=I+[A¢+ (wam + w{D)A] - t,,

B=By-t; N=A," ¢,

(k)= (Byws+ TR Bywlk)+ Dv) - t,

U= W™ Wan,
with ¢, is sampling time, w,, is the nominal value
of . wy,, and AeR™",
DRyeR ™

Since D(k) contain gas temperature distribution,
inlet steam temperature and inlet steam mass flow

BeR ™! NeRr""
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rate, DXk can be classified by deterministic
component D, and stochastic one D,(4), so we
reformulate system (35) as
x(k+1) = Ax(k) + Bul(k) + <x(R)N> u(k) (36)
+ D,+ Dk

In the superheater, the inlet and outlet steam
temperature are usually measured for the purpose
of control. Hence, the measurement matrix takes

the form, Ce=[(1)88 ?] SO  measurement

equation is

2(k) = C( k) + n(k) (37
where n(k)=N(0,R,) is white noise process with
zero mean and covariance is R.eR %*%. Assume

the inlet and outlet gas temperature vanation, 47,

and 4T, be the uncorrelated with each other
ATy = N(0, ), 4T = N(0,0%)  then  unknown
input variation 4D, is
ool 2
(l+jif—)AT,l—7?AT,,.

dy

d,=[{(n~0.5)41— L}’ —(0.54!— L)*]d,
dy=(0.54i— L)%d.
So D,k can be represented by mean value D,

and variation 4D, as follows

D) = D,,{ "Dv-], DsR"Z
4D

Variance of D,(k), @ is represented as
Q=E {Dd[ jg:] [4D,, 4D,) DZ}‘
Deterministic ~ disturbance D,
therefore can be compensated as
Dg=—(A+ Nu(B)) " 'Dy( k)
%(k) = (k) — Dy
where x(%) is estimated value and x(%) is Kalman

filter state.
Linearized model coefficient is constructed as

be measurable,

fR08 - BRIBBRRNGE F138 BARK, 19995 118
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Fx(k), u( k) = Ax(k) +<x( k) N> (k) + Bu(k)  (38)
A _ [ 3R x(k), u{R))
F(x(k)(+))—[ 9x( %) ]xw=xum (39)
= A+ Nu(k)
Using the Extended Kalman Filter theoryl(10],
steam temperatures are  estimated
measurement and time update equations.
Measurement update equation:
b+ 1) (oy= (A + Nu(R) (A (1) + Bulk)

P+ 1) (oy=(A+ Nu(B)P(R) (1 (A+ Nu(B)) T+ Q
K(k+1)=P(k+1) ) CHCPk+1) ,CT+R) !
Time update equation:

e+ D= x(k+1) ,+Kk+1)
{2(k+ 1)~ CLx(k+1) o)+ D))

following

P(k+1) (4)= {I— K(k+ DCIPk+1) ().

In this paper, we divide the superheater into 5
segments, and construct an Extended Kalman Filter
when the gas flows in parallel with the fluid inside.

4. Simulation

Computer simulations were performed to verify
the performance of the proposed controller. It is
shown that the estimated value follows the steam
temperature  under the variation of inlet steam
termperature and flue gas temperature, and that the
proposed controller maintains the outlet stearn
temperature properly. Superheater is approximated
as a system with states consisting of 20 steam
temperatures. Whereas in the interest of simplicity
in implementation, the state model for the observer
is derived by decomposing the superheater into 5
segments, The following values obtained from an
actual superheater specification were used in the
simulation[6]:

L=328m), a =

b =024, d=0.49.

—0.49, a; = 2.08x1073,

In equation (3), the input weighting matrix R is
taken to be I, and the state weighting matrices P
and @ are taken to be 5/. Those weighting
matrices are used in the state feedback controller

(441) 53
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(34). Superheater system is assumed to be 100%
BMCR operation, so Extended Kalman Filter is
used to estimate systemn state by linealizing in
operating point. In the simulation, bound satisfying
iteration difference of #*(# and 2Y*P(» is 00L
Total simulation time is 400 (s), iteration time is 1
(s) and sampling time is 0.1 (s). Since we
assumed normal operation, we simulate from 50 (s).

The initial flue gas temperature profile for the
parallel flow arrangement is illustrated in Fig.3(a),
where the flue gas temperatures at /=0 and /=1L
are 850 (T) and 800 (T), respectively. The initial
flue gas temperature profile is approximated as a
secorkd-degree polynomial. In the simulation, flue
gas temperatures at /=0 and /=L vary in time
independently, and inbetween the temperature
distribution changes smoothly according to the
variation of the flue gas temperatures at /=0 and
I=L. Fig. 3(b) illustrates the flue gas temperature
variations at /=0 and /=L, where the upper part
represents the temperature variation at /=0 and
the lower part represents the temperature variation
at /=L. The inlet steam temperature variation is a
known external input. Fig. 3(c) shows the inlet
steam temperature variation. As shown in Fig. 3(c),
the inlet steam temperature changes before and
after at 200 (s). Variation of the inlet steam mass
flow rate is shown in Fig. 3(d). The inlet steam
mass flow rate decreases and increases linearly
from 320 (s) to 330 (s) and from 330 (s) to 340 (s).
With the specified initial conditions and temperature
variations, it has been checked how the observer
estimates the superheater steam temperature. The
first and the fourth states in the observer
geometrically correspond to the fourth and the
sixteenth steam states of the superheater model
partitioned into 20 segments. They are compared in
Fig. 4. In Fig. 4, it can be seen that the estimate
follows the true value very closely, even though a
small offset can be noticed, which results from the
crude dividing scheme for the observer model and
the appro- ximation of the flue gas temperature.

54 (442)
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Fig. 5. Input and output

Fig. 5(a) shows the spray water mass rate. It
can be seen that the spray water mass rate
changes against the variation of the inlet steam
temperature and steam mass flow rate. The outlet
steam temperature is shown in Fig. 5(b). The
changes of the inlet steam temperature and steam
mass flow rate cause the outlet steam temperature
to change after 5~6 (s) by about one-fifth of the
inlet steam temperature change. As shown in Fig.
5(b), the superheater outlet temperature is properly
maintained at 540(<T) under the changes of inlet
steam temperature, inlet mass flow rate and flue
gas temperature. In this paper, we assume the
stochastic unknown input changes with 47,
=N(0,2), 4Ty = N(0,2). System also has mea-

surement noise with n(k&) = N(0,1).

5. Conclusion

In this paper, we proposed the temperature
controller for the heat exchanger system using
iterative method. With this controller, we apply to
the superheater system Uncertain information about
gas temperature distribution was regarded as white
noise process, and applied to the Extended Kalman
Filter. We show that the superheater outlet
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temperature is properly maintained by a tracking
controller based on the Extended Kalman Filter
under the variation of inlet steam mass flow rate,
inlet steam temperature and flue gas temperature.
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