• Title/Summary/Keyword: linear quadratic control

Search Result 531, Processing Time 0.026 seconds

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.217-222
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

  • PDF

The Study on Position Control of Nonlinear System Using Wavelet Neural Network Controller (웨이블렛 신경회로망 제어기를 이용한 비선형 시스템의 위치 제어에 관한 연구)

  • Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2365-2370
    • /
    • 2008
  • In this paper, applications of wavelet neural network controller to position control of nonlinear system are considered. Wavelet neural network is used in the objectives which improve the efficiency of LQR controllers. It is possible to make unstable nonlinear systems stable by using LQR(Linear Quadratic Regulator) technique. And, in order to be adapted to disturbance effectively in this system it uses wavelet neural network controller. Applying this method to the position control of nonlinear system, its usefulness is verified from the results of experiment.

Effects of Supplemental Liquid DL-methionine Hydroxy Analog Free Acid in Diet on Growth Performance and Gastrointestinal Functions of Piglets

  • Kaewtapee, C.;Krutthai, N.;Bunchasak, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1166-1172
    • /
    • 2016
  • This study was conducted to determine the effect of dietary supplementation of liquid DL-methionine hydroxy analog free acid (DL-MHA) on growth performance and gastrointestinal conditions of piglets. One hundred and eighty crossbred barrow piglets (Large White${\times}$Landrace, body weight: $12.48{\pm}0.33kg$) were divided into three groups with ten replications of six piglets each. Piglets received DL-MHA in diet at a concentration of 0 (control group), 0.15%, or 0.24%. The results indicated that increasing the standardized ileal digestible (SID) of sulfur amino acids (SAA) to lysine (SID SAA:Lys) ratio by supplementation of DL-MHA tended to increase (quadratic; p<0.10) weight gain and ADG, and showed slightly greater (linear; p<0.10) gain:feed ratio. The pH in the diet and cecum linearly decreased (p<0.01), whereas pH in colon had a quadratic response (p<0.01) with increasing supplementation of DL-MHA. By greater supplementation of DL-MHA, the population of Lactobacillus spp. in rectum was likely to increase (quadratic; p<0.10), but Escherichia coli population in the diet was reduced (quadratic; p<0.05). Acetic acid concentration and total short-chain fatty acids in cecum linearly increased (p<0.05), whereas valeric acid in cecum quadratically increased (p<0.05) with increasing DL-MHA levels. Moreover, the villous height of the jejunum quadratically increased (p<0.01) as the supplementation of DL-MHA was increased. It is concluded that the addition of DL-MHA in diet improved the growth performance and the morphology of gastrointestinal tract of piglets.

Extension of the LQR to Accomodate Actuator Saturation Bounds for Flexible Space Structures (제한된 제어입력을 갖는 유연우주구조물에 대한 확장된 LQR)

  • Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.71-77
    • /
    • 2002
  • We consider the simultaneous slewing and vibration suppression control problem of an idealized structural model which has a rigid hub with two cantilevered flexible appendages and finite tip masses. The finite clement method(FEM) is used to obtain linear finite dimensional equations of motion for the model. In the linear quadratic regulator(LQR) problem, a simple method is introduced to provide a physically meaningful performance index for space structure models. This method gives us a mathematically minor but physically important modification of the usual energy type performance index. A numerical procedure to solve a time-variant LQR problem with inequality control constraints is presented using the method of particular solutions.

Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method (접면포착법에 의한 수중익 주위의 이층류 유동계산)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF

Design of First Order Controllers with Time Domain Specifications(ICCAS 2003)

  • Kim, Keun-Sik;Woo, Young-Tae;Kim, Young-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1-6
    • /
    • 2003
  • This paper considers the problem of determining a set of stabilizing first order controller gains, for a given linear time invariant plant, that meets or exceeds closed loop step response specifications. The method utilizes two recent results: For a given system, (1) finding a set of stabilizing first order controller gains and (2) the relationship between time response (overshoot and speed) and the coefficients of the characteristic polynomial. The method allows us to extract a subset of first order controller gains that meets stability as well as time domain performance requirements. The computations involved are the intersections of two dimensional sets described by linear and quadratic inequalities in the controller design space. It is illustrated by examples.

  • PDF

Formulation of New Hyperbolic Time-shift Covariant Time-frequency Symbols and Its Applications

  • Iem, Byeong-Gwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.26-32
    • /
    • 2003
  • We propose new time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes showing hyperbolic TF structure. Obtained through hyperbolic warping the narrowband Weyl symbol (WS) and spreading function (SF) in frequency, the new TF tools are useful for analyzing LTV systems and random processes characterized by hyperbolic time shifts. This new TF symbol, called the hyperbolic WS, satisfies the hyperbolic time-shift covariance and scale covariance properties, and is useful in wideband signal analysis. Using the new, hyperbolic time-shift covariant WS and 2-D TF kernels, we provide a formulation for the hyperbolic time-shift covariant TF symbols, which are 2-D smoothed versions of the hyperbolic WS. We also propose a new interpretation of linear signal transformations as weighted superposition of hyperbolic time shifted and scale changed versions of the signal. Application examples in signal analysis and detection demonstrate the advantages of our new results.

On ths Stability Issues of Linear Takagi-Sugeno Fuzzy Models

  • Joh, Joongseon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.110-121
    • /
    • 1997
  • Stability issues of linear Takagi-Sugeno fuzzy modles are thoroughly investigated. At first, a systematic way of searching for a common symmetric positive definite P matrix (common P matrix in short), which is related to stability, is proposed for N subsystems which are under a pairwise commutativity assumption. Robustness issue under modeling uncertainty in each subsystem is then considered by proposing a quadratic stability criterion and a method of determining uncertainty bounds. Finally, it is shown that the pairwise commutative assumption can be in fact relaxed by interpreting the uncertainties as mismatch parts of non-commutative system matrices. Several examples show the validity of the proposed methods.

  • PDF

A Learning Method of LQR Controller using Increasing or Decreasing Information in Input-Output Relationship (입출력의 증감 정보를 이용한 LQR 제어기 학습법)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.84-91
    • /
    • 2006
  • The synthesis of optimal controllers for multivariable systems usually requires an accurate linear model of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. This paper presents a novel loaming method for the synthesis of LQR controllers that doesn't require explicit modeling of the plant dynamics. This method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the LQR objective function. It becomes easier and more convenient because it is relatively very easy to get the sign of Jacobian instead of its Jacobian. Simulations involving an overhead crane and a hydrofoil catamaran show that the proposed LQR-LC algorithm improves controller performance, even when the Jacobian information is estimated from input-output data.