• Title/Summary/Keyword: linear prediction method

Search Result 866, Processing Time 0.034 seconds

Wind Speed Prediction using WAsP for Complex Terrain (복합지형에 대한 WAsP의 풍속 예측성 평가)

  • Yoon, Kwang-Yong;Yoo, Neung-Soo;Paek, In-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Wind Speed Prediction using WAsP for Complex Terrain (WAsP을 이용한 복잡지형의 풍속 예측 및 보정)

  • Yoon, Kwang-Yong;Paek, In-Su;Yoo, Neung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

A Study on Modified Linear Prediction Method to Improve Target Estimation (목표물 추정 향상을 위한 수정 선형 예측방법에 대한 연구)

  • Lee, Kwan-Hyeong;Joo, Jong-Hyuk
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.337-342
    • /
    • 2016
  • In this paper, we studied a modified linear prediction method to estimate target signal correctly. Linear prediction method estimate direction-of-arrival to linear combination for any antenna element and other antenna elements. Modified linear prediction used optimal weight and posterior probability method. Through simulation, we are comparative analysis about the performance of proposed, bartlett and MUSIC method. From simulation, Bartlett and MUSIC method was estimation 3 targets signal, and proposed method estimated 4 targets. We showed the superior performance of the proposed algorithm relative to the classical method in order to estimate of target signals.

Maritime region segmentation and segment-based destination prediction methods for vessel path prediction (선박 이동 경로 예측을 위한 해상 영역 분할 및 영역 단위 목적지 예측 방법)

  • Kim, Jonghee;Jung, Chanho;Kang, Dokeun;Lee, Chang Jin
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.661-664
    • /
    • 2020
  • In this paper, we propose a maritime region segmentation method and a segment-based destination prediction method for vessel path prediction. In order to perform maritime segmentation, clustering on destination candidates generated from the past paths is conducted. Then the segment-based destination prediction is followed. For destination prediction, different prediction methods are applied according to whether the current region is linear or not. In the linear domain, the vessel is regarded to move constantly, and linear prediction is applied. In the nonlinear domain with an uncertainty, we assume that the vessel moves similarly to the most similar past path. Experimental results show that applying the linear prediction and the prediction method using a similar path differently depending on the linearity and the uncertainty of the path is better than applying one of them alone.

Comparison of Linear and Nonlinear Regressions and Elements Analysis for Wind Speed Prediction (풍속 예측을 위한 선형회귀분석과 비선형회귀분석 기법의 비교 및 인자분석)

  • Kim, Dongyeon;Seo, Kisung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.477-482
    • /
    • 2015
  • Linear regressions and evolutionary nonlinear regression based compensation techniques for the short-range prediction of wind speed are investigated. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS for wind speed prediction. The proposed method is compared to various linear regression methods for prediction of wind speed. Also, statistical analysis of distribution for UM elements for each method is executed. experiments are performed for KLAPS(Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea.

Adaptive Two Dimensional Linear Prediction Algorithm For Estimating Incident Angles of Multiple Broadbamd Signals. (다수의 광대역 신호의 입사각 추정을 위한 이차원의 정응선형예측 알고리즘)

  • 김태원
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1987.11a
    • /
    • pp.61-65
    • /
    • 1987
  • An algorithm for estimating incident angles of multiple broaband signals is proposed. The method adopts semicausal model for two dimensional linear prediction filter coefficients such that the arithmatic averag of the mean squared values of the forward and reverse prediction arrors is minimized. Preliminary results demonstrating the performance of the proposed method are presented. Simulation results indicate that the performance depends on signal-to-noise ratio and prediction order in spatial demension.

  • PDF

Development & Verification of Frequency-Strain Dependence Curve (주파수-변형률 곡선의 개발 및 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.146-153
    • /
    • 2009
  • One dimensional site response analysis is widely used in prediction of the ground motion that is induced by earthquake. Equivalent linear analysis is the most widely used method due to its simplicity and ease of use. However, the equivalent linear method has been known to be unreliable since it approximates the nonlinear soil behavior within the linear framework. To consider the nonlinearity of the ground at frequency domain, frequency dependent algorithms that can simulate shear strain - frequency dependency have been proposed. In this study, the results of the modified equivalent linear analysis are compared to evaluate the degree of improvement and the applicability of the modified algorithms. Results show the novel smoothed curve that is proposed by this study indicates the most stable prediction and can enhance the accuracy of the prediction.

  • PDF

Characteristics of Cow´s Voices in Time and Frequency domains for Recognition

  • Ikeda, Yoshio;Ishii, Y.
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • On the assumption that the voices of the cows are produced by the linear prediction filter, we characterized the cows’voices. The order of this filter was determined by examining the voice characteristics both in time and frequency domains. The proposed order of the linear prediction filter is 15 for modeling voice production of the cow. The characteristics of the amplitude envelope of the voice signal was investigated by analyzing the sequence of the short time variance both in time and frequency domains, and the new parameters were defined. One of the coefficients o the linear prediction filter generating the voice signal, the fundamental frequency, the slope of the straight line regressed from the log-log spectra of the short time variance and the coefficients of the linear prediction filter generating the sequence of the short time variance of the voice signal can differentiate the two cows.

  • PDF

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

Comparison of MLR and SVR Based Linear and Nonlinear Regressions - Compensation for Wind Speed Prediction (MLR 및 SVR 기반 선형과 비선형회귀분석의 비교 - 풍속 예측 보정)

  • Kim, Junbong;Oh, Seungchul;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.851-856
    • /
    • 2016
  • Wind speed is heavily fluctuated and quite local than other weather elements. It is difficult to improve the accuracy of prediction only in a numerical prediction model. An MOS (Model Output Statistics) technique is used to correct the systematic errors of the model using a statistical data analysis. The Most of previous MOS has used a linear regression model for weather prediction, but it is hard to manage an irregular nature of prediction of wind speed. In order to solve the problem, a nonlinear regression method using SVR (Support Vector Regression) is introduced for a development of MOS for wind speed prediction. Experiments are performed for KLAPS (Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea. The MLR and SVR based linear and nonlinear methods are compared to each other for prediction accuracy of wind speed. Also, the comparison experiments are executed for the variation in the number of UM elements.