• Title/Summary/Keyword: linear power amplifiers

Search Result 40, Processing Time 0.024 seconds

Development of Power Supply for Voltage-Adaptable Converter to Drive Linear Amplifiers with Variable Loads (가변부하를 갖는 선형 증폭기를 구동하기 위한 전압적응 변환기용 전력공급기 개발)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.251-257
    • /
    • 2014
  • An actuator system is a type of motor designed to control a mechanism operated by a source of energy, in the form of an electric current by converting energy into some kind of motion. As audio actuators, transforming electric voltage signal into audio signal, speakers and amplifiers are commonly used. In applications of industry, high output power systems are required. For these systems to generate high-quality output, it is essential to control output impedance of audio systems. We have developed an adaptable power supply for driving active amplifier systems with variable loads. Depending on the changing values of resistance of the speaker which produces audible sound by transforming electric voltage signal, the power supply source of the active amplifier can generate the maximum power delivered to the speaker by an adaptable change of loads. The amplifier is well protected from the abrupt increment of peak current and an excess of current flow.

A dual-path high linear amplifier for carrier aggregation

  • Kang, Dong-Woo;Choi, Jang-Hong
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.773-780
    • /
    • 2020
  • A 40 nm complementary metal oxide semiconductor carrier-aggregated drive amplifier with high linearity is presented for sub-GHz Internet of Things applications. The proposed drive amplifier consists of two high linear amplifiers, which are composed of five differential cascode cells. Carrier aggregation can be achieved by switching on both the driver amplifiers simultaneously and combining the two independent signals in the current mode. The common gate bias of the cascode cells is selected to maximize the output 1 dB compression point (P1dB) to support high-linear wideband applications, and is used for the local supply voltage of digital circuitry for gain control. The proposed circuit achieved an output P1dB of 10.7 dBm with over 22.8 dBm of output 3rd-order intercept point up to 0.9 GHz and demonstrated a 55 dBc adjacent channel leakage ratio (ACLR) for the 802.11af with -5 dBm channel power. To the best of our knowledge, this is the first demonstration of the wideband carrier-aggregated drive amplifier that achieves the highest ACLR performance.

Q-band MMIC Driver and Power Amplifiers for Wideband wireless Multimedia (Q-band 광대역 무선 멀티미디어용 MMIC구동 및 전력증폭기)

  • 강동민;이진희;윤형섭;심재엽;이경호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.167-170
    • /
    • 2002
  • The design and fabrication of Q-band 3-stage monolithic microwave integrated circuit(MMIC) driver and power amplifiers for WLAN are presented using 0.2${\mu}{\textrm}{m}$ AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT). In each stage of the MMIC DA, a negative feedback is used for both broadband and good stability. The MMIC PA has employed a balanced configuration to overcome these difficulties and achieve high power with low VSWR over a wide frequency range. In the MMIC DA, the measurement results arc achieved as an input return loss under -4dB, an output return loss under -l0dB, a gain of 14dB, and a PldB of 17dB at C-band(36~ 44GHz). The chip size is 28mm$\times$1.3mm. The developed MMIC PA has the l0dB linear gain over 360Hz to 420Hz band and 22dBm PldB performance at 400Hz. The size of fabricated MMIC PA is 4mm x3mm. These results closely match with design results. This MMIC DA Sl PA will be used as the unit cells to develop millimeter-wave transmitters for use in wideband wireless LAN systems.

  • PDF

A Feedforward Linear Power Amplifier using Error Feedback Technique (에러 피드백 기술을 이용한 피드 포워드 선형 전력 증폭기)

  • 김완종;조경준;김종헌;김남영;이종철;이병제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1407-1413
    • /
    • 2000
  • This paper presents a feedforward linear power amplifier (LPA) using error feedback technique to achieve low intermodulation distortions(IMD) of power amplifiers for base stations. Especially, the proposed linear power amplifier is applied to feedforward technique combined with error feedback technique, which has no loss of amplifier gain unlike typical feedback technique. The proposed LPA is designed by using HP ADS ver. 1.3, fabricated. When two-tone signals at 1850 MHz and 1851.25 MHz with -7 dBm/tone from synthesizers are injected into the main power amplifier with gain of 28 dB and P1dB of 1W, the proposed LPA could reduce more than 35 dB.

  • PDF

A Reconfigurable Power Divider for High Efficiency Power Amplifiers (고효율 전력 증폭기를 위한 재구성성이 있는 전력 분배기)

  • Kim, Seung-Hoon;Chung, In-Young;Jeong, Jin-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.107-114
    • /
    • 2009
  • In this paper, high efficiency amplifier configuration is proposed using the reconfigurable power divider. In order to enhance average efficiency of linear power amplifiers for wireless communication, it is required to increase efficiency in low output power region. The proposed power divider operates in two modes, high power mode and low power mode, according to output power. In each mode, it allows impedance matches and low loss, which is made possible by employing two $\lambda/4$ coupled lines and two switches. The fabricated power divider shows the return loss ($S_{11}$) and insertion loss ($S_{21}$) of -16.49 dB and -0.83 dB, respectively, in low power mode. In high power mode, the measured return loss ($S_{11}$) and insertion loss ($S_{31}$) are -16.28 dB and -0.73 dB, respectively. This result successfully demonstrates the reconfigurability of the proposed power divider.

A Novel Hybrid Balun Circuit for 2.4 GHz Low-Power Fully-differential CMOS RF Direct Conversion Receiver (2.4 GHz 저전력 차동 직접 변환 CMOS RF 수신기를 위한 새로운 하이브리드 발룬 회로)

  • Chang, Shin-Il;Park, Ju-Bong;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.86-93
    • /
    • 2008
  • A low-power, low-noise, highly-linear hybrid balun circuit is proposed for 2.4-GHz fully differential CMOS direct conversion receivers. The hybrid balun is composed of a passive transformer and loss-compensating auxiliary amplifiers. Design issues regarding the optimal signal splitting and coupling between the transformer and compensating amplifiers are discussed. Implemented in $0.18{\mu}m$ CMOS process, the 2.4 GHz hybrid balun achieves 2.8 dB higher gain and 1.9 dB lower noise figure than its passive counterpart and +23 dBm of IIP3 only at a current consumption of 0.67 mA from 1.2 V supply. It is also examined that the hybrid balun can remarkably lower the total noise figure of a 2.4 GHz fully differential RF receiver only at a cost of 0.82 mW additional power dissipation.

A CMOS 5-bit 5GSample/Sec Analog-to-digital Converter in 0.13um CMOS

  • Wang, I-Hsin;Liu, Shen-Iuan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • This paper presents a high-speed flash analog-to-digital converter (ADC) for ultra wide band (UWB) receivers. In this flash ADC, the interpolating technique is adopted to reduce the number of the amplifiers and a linear and wide-bandwidth interpolating amplifier is presented. For this ADC, the transistor size for the cascaded stages is inversely scaled to improve the trade-off in bandwidth and power consumption. The active inductor peaking technique is also employed in the pre-amplifiers of comparators and the track-and-hold circuit to enhance the bandwidth. Furthermore, a digital-to-analog converter (DAC) is embedded for the sake of measurements. This chip has been fabricated in $0.13{\mu}m$ 1P8M CMOS process and the total power consumption is 113mW with 1V supply voltage. The ADC achieves 4-bit effective number of bits (ENOB) for input signal of 200MHz at 5-GSample/sec.

Adaptive Predistortion for High Power Amplifier by Exact Model Matching Approach

  • Ding, Yuanming;Pei, Bingnan;Nilkhamhang, Itthisek;Sano, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.401-406
    • /
    • 2004
  • In this paper, a new time-domain adaptive predistortion scheme is proposed to compensate for the nonlinearity of high power amplifiers (HPA) in OFDM systems. A complex Wiener-Hammerstein model (WHM) is adopted to describe the input-output relationship of unknown HPA with linear dynamics, and a power series model with memory (PSMWM) is used to approximate the HPA expressed by WHM. By using the PSMWM, the compensation input to HPA is calculated in a real-time manner so that the linearization from the predistorter input to the HPA output can be attained even if the nonlinear input-output relation of HPA is uncertain and changeable. In numerical example, the effectiveness of the proposed method is confirmed and compared with the identification method based on PSMWM.

  • PDF

New Method for Predicting the 1 dB Gain Compression Point (1dB 이득 억압점을 예측하기 위한 새로운 방법)

  • 방준호;엄순영;김석태;김동용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1793-1801
    • /
    • 1994
  • In this paper, a new method for predicting the 1 dB gain compression point of cascaded N amplifiers is proposed. With the proposed method, the transfer function of each amplifier is derived from scalar data available from the manufacturers data sheet and all transfer functions are producted with scalar in order to also derive the overall transfer function of the subsystem under the assumption that the input and output port of each amplifier are matched. Therefore, the 1 dB gain compression point of the subsystem can be predicted or estimated, reversely, utilizing the overall transfer function obtained with the proposed method. The proposed method can be used irrespective of the number of scalar data but, in this paper, it is analyzed only with two scalar data (linear power gain and 1 dB gain compression point) and three scalar data(linear power gain, 1 dB and 0.5 dB gain compression points). With two sample amplifiers operated in Ku-band, the predicted results by the proposed and previous method, respectively, and the experimental results are together presented in order to confirm its utility.

  • PDF

A Research on a Cross Post-Distortion Balanced Linear Power Amplifier for Base-Station (기지국용 Cross Post-Distortion 평형 선형 전력 증폭기에 관한 연구)

  • Choi, Heung-Jae;Jeong, Hee-Young;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1262-1270
    • /
    • 2007
  • In this paper, we propose a new distortion cancellation mechanism for a balanced power amplifier structure using the carrier cancellation loop of a feedforward and post-distortion technique. The proposed cross post-distortion balanced linear amplifier can reduce nonlinear components as much as the conventional feedforward amplifier through the output dynamic range and broad bandwidth. Also the proposed system provides higher efficiency than the feedforward. The capacities of power amplifier and error power amplifier in the proposed system are analyzed and compared with those of feedforward amplifier. Also the operation mechanisms of the three kind loops are explained. The proposed cross post-distortion balanced linear power amplifier is implemented at the IMT-2000($f_0=2.14\;GHz$) band. With the commercial high power amplifiers of total power of 240 W peak envelope power fer base-station application, the adjacent channel leakage ratio measurement with wideband code division multiple access 4FA signal shows 18.6 dB improvement at an average output power of 40 dBm. The efficiency of fabricated amplifier Improves about 2 % than the conventional feedforward amplifier.