• 제목/요약/키워드: linear mixed estimation

검색결과 78건 처리시간 0.033초

A Comparison of Influence Diagnostics in Linear Mixed Models

  • Lee, Jang-Taek
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.125-134
    • /
    • 2003
  • Standard estimation methods for linear mixed models are sensitive to influential observations. However, tools and concepts for linear mixed model diagnostics are rudimentary until now and research is heavily demanded in linear mixed models. In this paper, we consider two diagnostics to evaluate the effects of individual observations in the estimation of fixed effects for linear mixed models. Those are Cook's distance and COVRATIO. Results of our limited simulation study suggest that the Cook's distance is not good statistical quantity in linear mixed models. Also calibration point for COVRATIO seems to be quite conservative.

Mixed Linear Models with Censored Data

  • Ha, Il-do;Lee, Youngjo-;Song, Jae-Kee
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.211-223
    • /
    • 1999
  • We propose a simple estimation procedure in the mixed linear models with censored normal data, using both Buckly and James(1979) type pseudo random variables and Lee and Nelder's(1996) estimation procedure. The proposed method is illustrated with the matched pairs data in Pettitt(1986).

  • PDF

Estimation of Small Area Proportions Based on Logistic Mixed Model

  • Jeong, Kwang-Mo;Son, Jung-Hyun
    • 응용통계연구
    • /
    • 제22권1호
    • /
    • pp.153-161
    • /
    • 2009
  • We consider a logistic model with random effects as the superpopulation for estimating the small area pro-portions. The best linear unbiased predictor under linear mired model is popular in small area estimation. We use this type of estimator under logistic mixed motel for the small area proportions, on which the estimation of mean squared error is also discussed. Two kinds of estimation methods, the parametric bootstrap and the linear approximation will be compared through a Monte Carlo study in the respects of the normality assumption on the random effects distribution and also the magnitude of sample sizes on the approximation.

A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.969-976
    • /
    • 2008
  • Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.

Dirichlet Process Mixtures of Linear Mixed Regressions

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.625-637
    • /
    • 2015
  • We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.

불균형 선형혼합모형에서 추정량 (A Comparison of Estimation in an Unbalanced Linear Mixed Model)

  • 송석헌;정병철
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.337-354
    • /
    • 2002
  • 본 논문에서는 오차성분이 계열상관을 갖는 불균형 랜덤모형에서 분산성분의 추정방법에 대하여 연구하였다. 분산성분에 대한 추정량으로 조건부 ANOVA(cANOVA), ML및 REML추정량등을 유도하였으며, 계열상관값과 불균형의 정도에 따른 추정량의 변동성을 추정량의 분위수를 이용하는 EQDGs플롯을 이용하여 비교하였다. 모의실험결과 cANOVA추정방법은 불균형의 정도에는 추정량값이 크게 영향을 받지 않는 것으로 나타났으나 계열상관값의 증가에 따라서는 변동성을 보이고 있다. 불균형의 정도와 계열상관값을 동시에 고려하는 경우에는 ML추정방법이 cANOVA, REML추정방법보다 변동성이 안정적으로 나타났다.

A MATRIX FORMULATION OF THE MIXED TYPE LINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Fazeli, S.;Shahmorad, S.
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1409-1420
    • /
    • 2011
  • In this paper we present an operational method for solving linear Volterra-Fredholm integral equations (VFIE). The method is con- structed based on three matrices with simple structures which lead to a simple and high accurate algorithm. We also present an error estimation and demonstrate accuracy of the method by numerical examples.

로버스트 선형혼합모형을 이용한 필드시험 데이터 분석 (Analysis of Field Test Data using Robust Linear Mixed-Effects Model)

  • 홍은희;이영조;옥유진;나명환;노맹석;하일도
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.361-369
    • /
    • 2015
  • 연속측도의 반응변수가 반복측정된 실험 자료의 분석을 위해 흔히 선형혼합모형이 사용된다. 그러나, 잔차의 분포가 이분산성이거나 비정규성을 가질 때 표준적인 선형혼합모형은 적절하지 않은 결과를 가져온다. 잔차의 분포가 두터운 꼬리를 가진 비정규분포를 보이는 타이어 필드시험 데이터를 로버스트 선형혼합모형에 적합시킴으로써 보다 더 정확하고 신뢰할 수 있는 분석결과를 얻을 수 있다. 추가적으로 신뢰성 분석 결과를 제시한다.

Methods and Techniques for Variance Component Estimation in Animal Breeding - Review -

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권3호
    • /
    • pp.413-422
    • /
    • 2000
  • In the class of models which include random effects, the variance component estimates are important to obtain accurate predictors and estimators. Variance component estimation is straightforward for balanced data but not for unbalanced data. Since orthogonality among factors is absent in unbalanced data, various methods for variance component estimation are available. REML estimation is the most widely used method in animal breeding because of its attractive statistical properties. Recently, Bayesian approach became feasible through Markov Chain Monte Carlo methods with increasingly powerful computers. Furthermore, advances in variance component estimation with complicated models such as generalized linear mixed models enabled animal breeders to analyze non-normal data.

일반화된 선형 혼합 모형(GENERALIZED LINEAR MIXED MODEL: GLMM)에 관한 최근의 연구 동향 (A Study for Recent Development of Generalized Linear Mixed Model)

  • 이준영
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.541-562
    • /
    • 2000
  • 일반화된 선형 혼합 모형(GLMM)은 자료가 계수의 형태로 나타나는 범주형 자료의 경우, 혹은 집락의 형태나 과산포된 비정규 자료, 또는 비선형 모형에 따르는 자료를 다루기 위한 모형 설정에 사용된다. 본 연구에서는 이에 대한 개요와 더불어, 이 모형의 적합을 위해 제시된 통계적 기법들중 의사가능도(quasi-likelihood: QL)를 이용한 추정 방법 및 Monte-Carlo 기법을 이용한 추정 방법들에 대해 조사하였다. 또한 GLMM에 대한 현재의 연구 방향 및 앞으로의 연구 가능 주제들에 대해서도 언급하였다.

  • PDF