The Korean Journal of Applied Statistics (2009)
22(1), 153-161

Estimation of Small Area Proportions Based on
Logistic Mixed Model

Kwang Mo Jeong® - Jung-Hyun Son?

IDept. of Statistics, Pusan National University; *Consulting Division, ECMINER Co.

{Received November 2008; accepted December 2008)

Abstract

We consider a logistic model with random effects as the superpopulation for estimating the small area pro-
portions. The best linear unbiased predictor under linear mixed model is popular in small area estimation.
We use this type of estimator under logistic mixed model for the small area proportions, on which the esti-
mation of mean squared error is also discussed. Two kinds of estimation methods, the parametric bootstrap
and the linear approximation will be compared through a Monte Carlo study in the respects of the normality

assumption on the random effects distribution and also the magnitude of sample sizes on the approximation.

Keywords: Best linear unbiased predictor, small area, logistic mixed model, mean squared error, para-
metric bootstrap.

1. Introduction

Sometimes we need to estimate the characteristics of small areas which are sub domains of the whole
population. When the sample survey has been already performed for the whole population according
to the sampling design we frequently encounter the presence of small sample sizes. Because the
estimation of target parameters of small area based on its own sample is not satisfactory other
statistical methods using auxiliary information from all the areas sharing common features are
useful. Lohr and Prasad (2003) studied small area estimation using auxiliary information, and
Ghosh and Rao (1994), Rao (2003) provide general discussions on small area estimation. The extra
variations between small areas can further be explained by including the random effects across the
small areas in a regression model. Even though we are to estimate additional variance components
in the random effects regression model this approach is very popular in the small area estimation.
Prasad and Rao (1990) theoretically discussed the best linear unbiased predictor(BLUP) and its
mean squared error(MSE) under several types of linear regression model with random effects which
is usually called a liner mixed model.

The proportions of certain attributes can be modeled effectively by a logistic regression model
with random effects, which belongs to a family of generalized linear mixed models including the
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linear mixed model as a special case. Under the logistic mixed model we consider a BLUP type
estimator for the small area proportions and we also discuss the estimation of MSE for the suggested
estimator. Gonzalez-Manteiga et al. (2007) applied Taylor series expansion to transform the logistic
mixed model into an approximate linear mixed model and used the generalized least squares(GLS)
estimator for the regression coefficients. On the other hand we may directly fit the logistic mixed
model using the statistical softwares to obtain the maximum likelihood(ML) estimator for the
regression coeficients and variance components. Numerical methods are used to approximate the
likelihood function which includes integrals with respect to the density function of random effects
distribution.

The mean squared error(MSE) is usually used as an accuracy measure of the BLUP as has been
discussed by Kackar and Harville (1984), Prasad and Rao (1990). Under the assumption of normality
for the random effects distribution the ML or the restricted maximum likelihood(REML) methods
are used to estimate the variance components on which the MSE depends. Prasad and Rao (1990)
provides estimators of MSE for the BLUP under several types of linear mixed models. But the
estimation method cannot be directly applied to the BLUP type estimator of proportions under the
logistic mixed model. In this situation the jackknife or the bootstrap approach is a good alternative
to estimating the MSE. Lahiri (2003), Hall and Maiti (2006) discusses on the bootstrap estimation
of MSE in various aspects of view.

In this paper we discuss the BLUP type estimator for the small area proportion and its MSE
based on the logistic model with random intercepts. We compare the efficiency of MSE estimation
methods between the linear approximation and the parametric bootstrap method by varying the
distributions of random effects through a Monte Carlo study.

2. Logistic Model with Random Intercepts
2.1. Model for small area mean

Suppose a finite population of overall size N consists of D small areas of sizes Ng with 25;1 Ny.
Let yq4 be the target variable of interest with a vector zg of k auxiliary variables for the j*
unit within d** small area. Let § = Ay be the parameter of interest for the population, where
A = diag{al,d=1,...,D}pxn~ and a§ = (aq1,. .., aan,) with uniformly bounded known elements
aq;. When a4; = 1/Ng the parameter § corresponds to the mean vector Y= (%1,...,Yp), where
Yi= Z;.V:dl yaj/Na is the mean of d** small area. Let Sy be a set of sampled units of size na from
the d*" area with total sample size n = 30, na.

The linear mixed model for the target variable yq; can be expressed as
Yaj = LB + va + €aj) (2.1)

where B is a vector of fixed effects and vg denotes the random effects of small areas and €g;’s are
independent errors having variances o2. When Ny is large the conditional mean of yq; given vq may
be written as

pa = XoB + va, (22)

where X4 is the vector of known means of the z4; for the d" area. According to Prasad and Rao
(1990) the BLUP of ugq is given by

1a(0) = X5 + 74 (7 — 4B) , (2.3)
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where 8 = (02, ¢2)" and 4 = 02 /(02 + Uf/nd) for known values of o2 and ¢2, and %, is the mean
of &q; for the sampled units in d** area, and 8 = (X!V~ IX)7'X'V~ly is a GLS estimator with
the design matrix X and the covariance matrix V of y.

We consider a finite population of small areas consisting of units generated from the superpopulation
model (2.1). The BLUP for the small area mean Yy can be written as

Yd( ) = Dvat Y iy, (2.4)

J€Sq J¢5Sq

where the second summation is taken over all nonsampled units with £; defined by
sy = 2yB + v (70 — 34B) (2:5)
2.2. Logistic model for binary responses

When yq; is a binary response taking 1 or 0 according as the 5" unit has a certain attribute or not
we consider a logistic model of the form

bg( T ) =z + va, (2.6)
1 — 7y

— Ty
where mg; = P(ysy = 1|45, va). The 74 can be expressed as

exp(a:djﬁ + vq)
1+ exp(z%, + va)”

(2.7)

Tdj =

The BLUP of (2.4), we call it BLUP type estimator for the small area proportion under the logistic
mixed, can be written as

2~ R 1 .
Ya (012,) = N— Z Ydj + Z Mg | s (28)
¢ \jesa ¢S
where 773, is obtained from (2.6) by substituting the estimators of 8 and vq for the nonsampled

units. We note that the f’d(&ﬁ ) is a composition of the mean of y4; for the sampled units with the
mean of predicted probabilities for the nonsampled units.

The coefficients B and the variance components o2 in (2.6) can be obtained by the ML or REML
method by maximizing the marginal likelihood defined by

D ng —ldb'
ex T + v 205

LB,y =111 / Py (@B +ve) e * (2.9)
elte 1+exp(xyB +va)  (2m02)2

The integral with respect to the random effects distribution can not be solved analytically in general
and we need numerical solutions. There are various numerical methods such as Gauss-Hermite
quadrature method, Monte Carlo method, and penalized quasi-likelihood approximation. We adopt
the Gauss-Hermite quadrature method to fit the logistic model (2.6) via Proc NLMIXED of SAS.

On the other hand Gonzalez-Manteiga et al. (2007) applied Taylor series expansion to transform
the logistic regression model (2.6) into the linear mixed model of the form

9(Ya) ~ 2HB + va + (Y — 7a;) 95 (7as), (2.10)
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where ggj(ma;) = log{ma;j/(1 — 74;)}. The model (2.10) can be written in the form
€4j = TgiB + va + eqj (2.11)

with the assumption that eq;’s are independent each other and also with the random effects vg.
Given vq the variables &4 are independent each other and the moments are E(£qjlvq) = n¢; and
Var(£4;|va) = gy (ma;)04; with 04 = mq;(1 — 74;). Gonzélez-Manteiga et al. (2007) suggested the
same estimator as given in (2.8) using the GLS estimator of 8 under the model (2.11).

3. Bootstrapping the Mean Squared Error

3.1. Estimation of mean squared error

When the {14(8) in (2.3) is estimated by substituting @ Kackar and Harville (1984) used the following
relationship under the normality of random effects and the translation-invariant property of 8,

. A 2

MSE [ﬂd(o)] = MSE [ﬂd (o)] +E [ﬂd(o) ~ (o)] . (3.1)

According to Henderson (1975) without any distributional assumptions on v4 and eg; the first
component of (3.1) can be expressed in the form

MSE [4(8)] = (1 — va)o? + (X4 — vaZa)' (X'V'X) ™" (Xa — vaZa) - (3.2)

But the second term E[u4(f) — 1a(0))? in (3.1) is generally not tractable except for the special
case such as the balanced ANOVA model ya; = pt + vq + €q; with ng = r. In estimating the finite

population mean Yy the MSE[?d(é)] approximately equals MSE[{14(8)] provided ng/Ng = 0 for
every small area.

Because the MSE depends on the variance components we need to estimate the MSE. We may refer
to Prasad and Rao (1990) for detailed discussion on the estimation of MSE and we simply introduce
the formula by Gonzilez-Manteiga et al. (2007) for the transformed model (2.11) with further
notations. Let ZJ, = ngsd 8ajZdj/0sq. and Ty = st;sd 84j%dj[Ord., Where o,q. = ngsd G dj
with 64; = #4;(1 — %4j). The variance matrix for the transformed variables &4 in (2.11) is given by

Ve =0227' + 5., (3.3)

where Z is a block diagonal matrix with elements 1’s and X, is also a diagonal matrix having
g'(m4;)%04; as diagonals. The estimator of MSE by Gonzélez-Manteiga et al. (2007) can be repre-
sented in terms of the following three components

G = 63diag {(1 — 9a)504}

G = (6rabra (Fa — JaBed) XV X)) (&g — YarZew)'] DD

D
Gi=2 {Z 035.(1 —Aa)? ¢ diag {(1 + 6205a.) >5240sa.} (3.4)
d=1 ‘

where Grg = 0ra./(Ng — nq) and 44 = &3/(&3 + O';dll) with 0sq. = Zjesd &a;. The estimator of

MSE()Q’d) by Gonzalez-Manteiga et al. (2007), denoted by mse? (}i’d), is given by the d** diagonal
element of the matrix G + Gz + 2@3. That is

msef?P(Yd) = [diag (él + Gyt 2@3)] @ (3.5)
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Table 3.1. Free throw data of NBA 15 top-scoring players

Player ng Yd Pd Bq Ttq Yy JmsefiB mseﬁp
Yao 13 10 0.769 0.0896 0.731 0.732 29.6193 86.9186
Frye 10 9 0.900 0.2481 0.761 0.763 44.8812 66.2024
Camby 15 10 0.667 —0.0786 0.696 0.695 27.9405 105.2871
Okur 14 9 0.643 —0.1139 0.689 0.687 31.8937 107.0592
Blount 6 4 0.667 —0.0401 0.704 0.704 29.0767 72.1310
Mihm 10 9 0.900 0.2481 0.761 0.763 44.5372 66.2024
Tlgauska 10 6 0.600 —0.1455 0.682 0.680 39.1234 100.3518
Brown 4 4 1.000 0.1794 0.748 0.750 36.3958 42.9510
Curry 11 6 0.545 —0.2303 0.663 0.661 44.5108 110.6431
Miller 10 9 0.900 0.2481 0.761 0.763 43.1030 66.2024
Haywood 8 4 0.500 —0.2317 0.663 0.660 49.3625 98.9308
Olowokan 9 8 0.889 0.2151 0.754 0.757 40.3247 65.9272
Mourning 9 7 0.778 0.0790 0.728 0.729 30.2221 77.3789
Wallace 8 5 0.625 —0.0960 0.692 0.691 37.1220 87.9868
Ostertag 6 1 0.167 —0.4705 0.608 0.602 115.6563 101.5380

where [diag (A)](4) means the d*" diagonal element of the matrix A.

As an alternative method to the linear approximation the bootstrap method seems to be reasonable
in the presence of small sample sizes. Instead of wild bootstrap by Gonzdlez-Manteiga et al. (2007)
we propose a parametric bootstrap under the assumption of normality on the distribution of random
effects. The parametric bootstrap algorithm consists of the following steps.

Step 1: Fit the logistic mixed model to obtain ,3 and ¥4, where ﬁ denotes an ML estimator maxi-
mizing (2.9).

Step 2: Calculate every predicted value #q; at 4.
Step 3: Obtain the estimator Yy given in (2.8).

Step 4: Bootstrap the variables yj; using f4; from the Bernoulli distribution;

ijNB(l,dej), -]‘:17..4,]\/’(17 d:1,,D

Step 5: Obtain ¥} and )A/d* in a similar way based on the bootstrapped (y;,%Z4), where z4; is the
same as the population values.

Step 6: Repeat Step 4 and Step 5 B times and obtain the bootstrapped estimator
2 ~ _ 2
mse’ (Yd) =B} Z (Yd*(b> - Yd*(b)> i (3.6)
b=1
3.2. A practical example

We explain the proposed method through a practical example of NBA free throws success probabil-
ities. The number of successes yq4 among ng trials for the fifteen center players in the NBA league
of 2005-2006 is listed in Table 3.1, which is given in Agresti (2007) and also originally in nba.com.
We assume the following mixed logistic model with no covariate term

logit(mq) = a + vq, (3.7)
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where 7y are success probability for the d** player, and vg’s are independent random variables
having N(0,02).

In Table 3.1 ps and 74 denote the sample proportion y4/ng and the predicted probability from
the model (3.7), respectively. The ia/d is the BLUP type composite estimator of (2.9) in which we
artificially assumed the total number of trials to be Ny = 500 for the d‘" player to formulate the
small areas of finite population. The ML estimators are & = 0.908 and 62 = 0.1779. The mse;?P
is calculated from (3.5), and the bootstrap estimator mseZ is obtained from (3.6) with B = 1,000.
We note that the sample proportions py varies from 0.167 to 1.0 with an extreme case of 0.608 for
the player Ostertag. On the other hand the #; based on the logistic mixed model varies between
0.61 and 0.76, and we note that the sample proportions shrink to the overall sample proportion
101/143 = 0.706.

4. Monte Carlo Study

We design a simulation study to compare the efficiency of mse? (?d) and mse}” (?d) and also to
asses the robustness of random effects distribution. We formulate a finite population consisting of
D = 20 small areas of each size Ny = 300. Two types of sampling designs are considered; one is the
case of equal sample sizes ng = 5,10 and the other the unequal sample sizes ng = 3 or 7 according
to the area number of odd or even. We consider the following logistic model with random intercepts

i
log <¢) = a + fiz145 + BaZ24 + va, (4.1)
1 —myy

where 14 is taken to be uniform over (—1,d/5) and z24; is Bernoulli with probability 0.5 and
the coefficients are & = —1.25, 8; = 0.5, 32 = —2.75. As a distribution for the random effects vq
we take N(0,02) and t-distribution with 3df. The binary responses yg4;’s are generated from the
Bernoulli distribution with probability 74 given in (4.1). The number of Monte Carlo iterations
and the bootstrap replications are R = 200 and B = 200, respectively.

To assess the efficiency of MSE estimators we define the d*" area MSE over R iterations by the
quantity

1</ _ 2
MSE,; = = ; (Yd(i) - Yd(i)) ) (4.2)

where Yd(i) is the d'" area mean at the i** iteration of simulated population. With a little abuse of
notation in this chapter we use the same notation Yy to denote the average of Yd(i) over R iterations,

that is, Y, = 1/R Zf;l Yd(i) with the corresponding estimator ?d. We also define the msey as

R
1
mseq = ® Z mseq(s), (4.3)

=1

where msey(;) is the estimated MSE at the ¢** iteration. The mseq by the bootstrap and the
approximation method will be denoted as mseZ and mse’ T, respectively. As an efficiency of mseg
by the bootstrap method we take the following quantity defined by

Q (msef) = % i (msef(i) - MSEd)2 , (4.4)
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Table 4.1. Estimators of MSE for the equal sample sizes of ng = 5 and 10
(a) when vg’s are random samples from N (0, 4)
Areas g Y, Yy MSE4 msef mse(‘;P QdB Q;‘P

2 5 0.2806 0.3272 176.247 150.681 288.893 0.0037 0.0241
4 5 0.8243 0.7001 327.062 254.321 289.856 0.0199 0.0137
6 5 0.0309 0.1575 231.675 207.470 210.769 0.0097 0.0135
8 5 0.9101 0.7514 407.448 330.034 279.455 0.0296 0.0306
10 5 0.1823 0.2472 196.488 173.068 263.354 0.0046 0.0204
12 5 0.4342 0.4255 171.289 156.869 318.720 0.0035 0.0327
14 5 0.4730 0.4750 150.558 151.437 323.177 0.0037 0.0439
16 5 0.5089 0.4985 155.000 161.545 318.953 0.0034 0.0365
18 5 0.4984 0.5182 244.720 186.854 322.827 0.0072 0.0198
20 5 0.3585 0.3849 163.123 165.825 310.557 0.0052 0.0295
2 10 0.5234 0.5307 126.085 107.694 160.935 0.0008 0.0022
4 10 0.4145 0.4105 130.181 108.226 163.317 0.0008 0.0021
6 10 0.2159 0.2617 132.588 129.228 148.397 0.0008 0.0021
8 10 0.0336 0.0960 61.133 104.324 83.813 0.0042 0.0025
10 10 0.6613 0.6350 105.249 109.695 159.322 0.0004 0.0040
12 10 0.5447 0.5164 125.354 114.290 166.849 0.0006 0.0047
14 10 0.2169 0.2514 96.471 122.077 144.888 0.0019 0.0044
16 10 0.6401 0.6476 121.243 108.508 160.670 0.0006 0.0028
18 10 0.5412 0.5407 129.651 112.809 169.641 0.0007 0.0029
20 10 0.8410 0.8294 87.794 80.681 114.856 0.0009 0.0037

(b) when v4’s are random samples from t-distribution with df = 3

Areas ng Y, Y, MSE,4 msedB msegp QdB Q&q il

2 5 0.3776 0.4074 110.139 101.189 233.653 0.0039 0.0210
4 5 0.4231 0.4438 115.169 109.046 245.985 0.0055 0.0231
6 5 0.5306 0.6038 163.943 110.713 228.601 0.0142 0.0173
8 5 0.6203 0.6703 117.131 93.957 210.340 0.0069 0.0148
10 5 0.7256 0.6495 156.660 93.230 219.112 0.0093 0.0109
12 5 0.5753 0.5683 77.561 88.427 234.079 0.0043 0.0309
14 5 0.4181 0.5048 189.195 104.333 236.068 0.0145 0.0104
16 5 0.7228 0.7586 108.544 97.497 199.015 0.0059 0.0180
18 5 0.7072 0.6726 89.358 78.360 219.189 0.0026 0.0252
20 5 0.8503 0.8733 117.570 81.317 130.879 0.0071 0.0134
2 10 0.5044 0.5088 47.376 47.374 127.519 0.0012 0.0075
4 10 0.4941 0.4710 58.529 56.849 133.743 0.0007 0.0067
6 10 0.6702 0.5992 116.077 73.374 125.540 0.0049 0.0011
8 10 0.2442 0.3720 243.112 113.173 126.525 0.0237 0.0147
10 10 0.5533 0.4970 111.211 71.122 130.409 0.0044 0.0014
12 10 0.4929 0.4900 55.209 49.555 125.888 0.0011 0.0060
14 10 0.3174 0.4484 252.004 117.182 134.755 0.0258 0.0151
16 10 0.5884 0.5357 99.242 63.562 128.658 0.0033 0.0019
18 10 0.6333 0.5779 107.166 76.516 141.956 0.0022 0.0021
20 10 0.4298 0.4585 65.722 50.808 125.747 0.0017 0.0046

where msedB@ is the estimator of MSE by the bootstrap at the i*" iteration. Hereafter we simply

denote the Q(msel) as QF and we also use similar notation Q4% for the mse

AP
d -

In the simulation results listed in Table 4.1 and Table 4.2 the MSE of (4.2) and its estimators are
multiplied by 10*, and both QF and Q?P are multiplied by 10% for simplification of digits. As we
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Table 4.2. Estimators of MSE for the unequal sample sizes

(a) when vg’s are random samples from N(0,4)

Areas ng Y, Yy MSE4 mseffla mse:}P QdB Q:?P
1 3 0.9494 0.7660 448.324 254.074 403.162 0.0513 0.0471
2 7 0.5086 0.5286 136.542 133.482 224.228 0.0031 0.0106
3 3 0.5696 0.5857 227.358 198.445 450.142 0.0117 0.0794
4 7 0.7167 0.7043 125.271 109.015 203.832 0.0015 0.0097
5 3 0.0468 0.2911 726.203 447.054 396.824 0.1246 0.1289
6 7 0.5983 0.6031 154.925 122.772 216.559 0.0034  0.0068
7 3 0.6383 0.6177 200.922 184.687 450.915 0.0073 0.0921
8 7 0.8732 0.7982 150.216 169.855 172.123 0.0071 0.0064
9 3 0.9383 0.8110 244.299 152.690 347.365 0.0141 0.0722
10 7 0.9499 0.8643 123.776 125.985 148.477 0.0024 0.0107
11 3 0.5783 0.6151 186.343 165.385 439.700 0.0072 0.0914
12 7 0.6369 0.6377 137.473 120.718 220.655 0.0017 0.0104
13 3 0.5600 0.5926 208.339 182.313 446.342 0.0147 - 0.0821
14 7 0.4579 0.5430 244.569 203.853 229.474 0.0098 0.0039
15 3 0.5048 0.5216 222.425 209.325 478.461 0.0110 0.1018
16 7 0.1344 0.2562 283.561 304.354 215.687 0.0151 0.0120
17 3 0.4444 0.5452 320.298 280.682 474.253 0.0320 0.0468
18 7 0.8509 0.8258 117.221 105.895 163.787 0.0025 0.0123
19 3 0.7055 0.7404 309.204 227.540 363.077 0.0281 0.0444
20 7 0.7965 0.7492 144.613 161.367 201.919 0.0039 0.0087

(b) when vg’s are random samples from t-distribution with df = 3

Areas ng Yy Yy MSE,4 msedB msegp Qf Q?P
1 3 0.7080 0.5698 354.197 191.214 351.268 0.0555 0.0174
2 7 0.5670 0.5169 137.108 116.745 210.388 0.0050 0.0082
3 3 1 0.2983 0.3935 © 215.001 134.227 350.278 0.0161 0.0350
4 7 0.1864 0.2514 138.195 127.541 176.398 0.0039 0.0045
5 3 0.8181 0.6356 465.656 182.814 331.921 0.0982 0.0329
6 7 0.2544 0.3638 228.432 141.746 207.781 0.0149 0.0034
7 3 0.8278 0.6714 343.858 150.655 332.385 0.0455 0.0203
8 7 0.4278 0.5081 152.281 118.765 210.491 0.0050 0.0058
9 3 0.4816 0.4835 121.836 126.579 352.460 0.0102 0.0686
10 7 0.2750 0.4069 335.962 220.673 205.276 0.0284 0.0200
11 3 0.2533 0.3133 155.190 134.423 332.132 0.0072 0.0531 °
12 7 0.3669 0.3662 99.123 97.697 203.905 0.0018 0.0136
13 3 0.5530 0.5016 173.895 " 146.106 362.460 0.0137 0.0526
14 7 0.7267 0.6241 248.184 165.223 204.666 0.0160 0.0051
15 3 0.6116 0.5720 146.043 120.700 347.142 0.0068 0.0561
16 7 0.8521 0.7869 175.023 145.970 179.230 0.0037 0.0079
17 3 0.3864 0.4512 145.383 119.769 352.472 0.0092 0.0601
18 7 0.6439 0.5719 157.125 117.155 205.579 0.0056 0.0046
19 3 0.4768 0.5358 172.365 144.725 375.404 0.0140 0.0701
20 7 0.4151 0.4440 102.957 94.924 210.683 0.0027 0.0141

see in Table 4.1 the values of Q¥ are smaller than those of Q4F in general, and the values of MSEy,
decrease when the sample size varies from ng = 5 to ng = 10. On the other hand the efficiencies
of MSE estimators denoted by QF and Q4¥ are improved when sample size becomes large. When
the random effect has a t-distribution the MSE and its estimators are more variable across the



Estimation of Small Area Proportions Based on Logistic Mixed Model 161

small areas. In this case the efficiencies of the estimators decrease compared to the case of normal
random effects. The linear approximation method seems to be moderately good if normality of
random effects is assumed and the sample size is ng = 10. The parametric bootstrap is more robust
to the violation from normality of the random effects distribution. The bootstrap has a tendency
of little underestimation of the true MSE compared to the relatively large overestimation by the
linear approximation method. The results of unequal sample sizes in Table 4.2 are similar to the
case of equal sample sizes. We finally conclude that the parametric bootstrap is better than the
linear approximation method in the sense of accuracy and robustness of estimation.

5. Conclusion and Further Comments

The estimation of small area proportions in the presence of small sample sizes is our main interest,
where the auxiliary information of other areas are useful. In this paper we consider a logistic model
with random effects to explain the random variation across small areas. The BLUP is popular in
estimating the small area means under linear mixed model. We discuss a BLUP type estimator based
on the logistic model with random intercepts to estimate small area proportions. The regression
parameters are usually estimated by the numerical methods such as quasi Newton-Raphson based
on the likelihood function. This type of estimator is the ML or REML estimator which can be
obtained via the commonly used statistical packages.

The MSE is commonly used as an accuracy measure of an estimator but the MSE of BLUP type
estimator depends on the unknown variance components. As an alternative to the approximation
method for the estimation of MSE a parametric bootstrap is suggested. According to a Monte
Carlo study the approximation method greatly overestimate the true MSE in contrast to a slight
underestimation of the bootstrap method. The heavy computational burden of bootstrap method
in performing a simulation study restricts the numbers of iterations and bootstrap replications to
moderate sizes.
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