• 제목/요약/키워드: linear matrix inequality(LMI)

검색결과 351건 처리시간 0.02초

비대칭 로터-자기베어링 시스템의 LMI에 기초한 $H_\infty$ 강건제어 (LMI-based $H_\infty$ Robust Control of Asymmetric Rotor-magnetic Bearing System)

  • 강호식;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제13권3호
    • /
    • pp.172-179
    • /
    • 2003
  • Linear matrix Inequality based $H_\infty$ robust controller is designed to control the motion of a 4-axis unbalanced rigid asymmetric rotor supported and controlled by two active magnetic bearings in this paper. To this end, the equations of motion of the system are derived via Hamilton's variational principle and transformed to a state-space form for the standard $H_\infty$ control problem. LMI-based controller, which does not require additional assumptions beyond the usual stabilizability and detectability assumptions, is designed based upon the pole place weighting function and loopshaping technique. The obtained results are compared with those reported in the available literature and the efficiency of the proposed LMI-based $H_\infty$ control is revealed.

ROBUST OUTPUT FEEDBACK $H\infty$ CONTROL FOR UNCERTAIN DELAYED SINGULAR SYSTEMS

  • Kim, Jong-Hae;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.513-522
    • /
    • 2006
  • This paper considers a robust output feedback $H\infty$ controller design method for singular systems with time-varying delay in state and parameter uncertainty in system matrix by an LMI approach and observer based technique, which can be solved efficiently by convex optimization. The sufficient condition for the existence of controller and the controller design method are presented by strict LMI(linear matrix inequality) approach. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계 (Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles)

  • 전성우;김도완;이호재
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.302-306
    • /
    • 2011
  • 본 논문은 무인 잠수정(Autonomous underwater vehicles: AUVs)의 심도 제어를 위한 타카키-수게노 (Takagi-Sugeno: T-S) 퍼지 모델 기반 제어기를 제안한다. Sector nonlinearity 기법을 통해 주어진 비선형 무인 잠수정은 T-S 퍼지 모델로 표현된다. 리아푸노프(Lyapunov) 함수를 이용하여 무인 잠수정의 심도 제어 성능을 보장하는 선형 행렬 부등식(Linear matrix inequality: LMI) 형태의 제어기 설계 조건을 유도한다. 모의 실험을 통해 제안된 기법의 심도 제어 성능을 검증한다.

LMI 기법을 이용한 시간지연 대규모 불확정성 선형 시스템의 강인 안정성 (Robust Stability of Uncertain Linear Large-scale Systems with Time-delay via LMI Approach)

  • 이희송;김진훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1287-1292
    • /
    • 1999
  • In large-scale systems, we frequently encounter the time-delay and the uncertainty, and these should be considered in the design of controller because these are the source of the degradation of the system performance and instability of system. In this paper, we consider the robust stability of the linear large scale systems with the uncertainties and the time-delays. The considered uncertainties are both structured uncertainty and the unstructured uncertainty. Also, the considered time-delays are time-varying having finite time derivative limits. Based on the Lyapunov theorem and the linear matrix inequality(LMI) technique, we present two sufficient conditions that guarantee the robust stability of the system. The conditions are expressed as the LMI forms which can be easily checked their feasibility by using the well-known LMI control toolbox. Finally, we show by two examples that our results are less conservative than the previous results.

  • PDF

선형행렬부등식을 이용한 정적출력궤환 제어기 설계 (Design of a Static Output Feedback Stabilization Controller by Solving a Rank-constrained LMI Problem)

  • 김석주;권순만;김춘경;문영현
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권11호
    • /
    • pp.747-752
    • /
    • 2004
  • This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.

고정 구조를 가지는$H_\infty$ 전력계통 안정화 장치 설계 (Design of a Fixed-Structure H$_{\infty}$ Power System Stabilizer)

  • 김석주;이종무;권순만;문영현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권12호
    • /
    • pp.655-660
    • /
    • 2004
  • This paper deals with the design of a fixed-structure $H_\infty$ power system stabilizer (PSS) by using an iterative linear matrix inequality (LMI) method. The fixed-structure $H_\infty$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the practical applicability of the proposed algorithm.

시간지연을 갖는 불확정성 대규모 시스템의 강인 제어기 설계 (Design of Robust Controller for Uncertain Large-scale Systems with Time-delays)

  • 이희송;김진훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권1호
    • /
    • pp.26-32
    • /
    • 2000
  • In this paper, we consider to robust controller design problem for the linear large scale systems with the uncertainties and the time-delays. The considered time-delays are that exist in the state and the input of the subsystems and the interconnected subsystems. And the considered uncertainties are two general types that exist in the system, input and interconnected matrices. Based on the linear matrix inequality(LMI) and Lyapunov theorem, we present sufficient conditions for the existence of a controller that guarantees the asymptotic stability of systems regardless of the uncertainties and the time-delays. Also, the controller can be easily obtained by checking the feasibility of the LMI's. Finally, we show the usefulness of our results by an example.

  • PDF

대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 정적 출력 궤환 제어기 설계 (An LMI-based Decentralized Sliding Mode Static Output Feedback Control Design Method for Large Scale Systems)

  • 최환호
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.381-384
    • /
    • 2008
  • In this paper, we consider the problem of designing decentralized sliding mode static output feedback control laws for a class of large scale systems with mismatched uncertainties. We derive a sufficient condition for the existence of a linear switching surface in terms of constrained linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given constrained LMI existence conditions. We also give an LMI-based algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

다층상구조물의 강인 진동제어에 관한 연구 (A Study of Robust Vibration Control for a Multi-Layer Structure)

  • 김창화;정병건;정해종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권8호
    • /
    • pp.1212-1219
    • /
    • 2009
  • 본 연구에서는 실용설계의 새로운 도구로써 제어계의 강인성, 성능, 안정성 등의 설계지침을 정량화하기 쉽고 해가 효율적으로 구해져 주목받는 선형행렬부등식을 이용하여 강인한 LMI 제어기를 설계한다. 우선 다층상 구조물의 진동제어를 위해 수학적 모델링을 행하고 적분형 서보계를 적용한 LMI 제어 기법으로 상태 피드백 제어칙을 설계한다. 다음으로 설계한 제어칙으로 시스템 불확실성의 변동에 대해 시간영역의 설계사양을 고려한 경우와 고려하지 않은 경우에 대하여 시뮬레이션을 행하고 실제 적용 가능성을 검토한다.

불확실 유체 역학 계수를 가진 대형급 무인잠수정의 강인 경로점 추적 (Robust Waypoint Tracking of Large Diameter Unmanned Underwater Vehicles with Uncertain Hydrodynamic Coefficients)

  • 김도완;박정훈;박호규;김태영
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.409-415
    • /
    • 2017
  • This paper addresses on an linear matrix inequality (LMI) formulation of the robust waypoint tracking problem of large diameter unmanned underwater vehicles (LDUUVs) in the horizontal plane. The interested design issue can be reformed as the robust asymptotic stabilization of the provided error dynamics with respect to the desired yaw angle, surge speed and attitude. Sufficient conditions for its robust asymptotic stabilizability against the hydrodynamic uncertainties are derived in the format of LMI. An example is provided to testify the validity of the proposed theoretical claims.