• Title/Summary/Keyword: linear filter

Search Result 1,173, Processing Time 0.032 seconds

Design and Analysis of Linear Channel-Selection Filter for Direct Conversion Receiver

  • Jin, Sang-Su;Ryu, Seong-Han;Kim, Hui-Jung;Kim, Bum-Man;Lee, Jong-Ryul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • An active RC 2nd order Butterworth filter suitable for a baseband channel-selection filter of a direct conversion receiver is presented. The linearity of the 2nd order Butterworth filter is analyzed. In order to improve the linearity of the filter, the operational amplifiers should have a high linear gain and low 3rd harmonic, and the filter should be designed to have large feedback factor. This second order Butterworth filter achieves-14dBV in-channel (400kHz, 500kHz) IIP3, +29dBV out-channel (10MHz, 20.2MHz) IIP3 and 15.6 $nV/\sqrt{Hz}$ input-referred noise and dissipates 10.8mW from a 2.7-V supply. The analysis and experimental results are in good agreement

Wavelets and Filter Banks

  • Chon, Inheung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 1997
  • We show that if an even length filter has the same length complementary filter in a generalized linear phase case, the complementary filter is unique, we find sufficient conditions for a unique existence of even length N complementary filter in a quadrature mirror filter bank, and we find all higher degree symmetric filters of length N + 4m which are complementary to a given symmetric filter of even length N.

  • PDF

Practical modeling of cigarette ventilation rate

  • Kim, Young-Hoh;Lee, Moon-Yong;Rhee, Kyu-Seo;Lee, Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.2
    • /
    • pp.109-118
    • /
    • 1999
  • A model predicted describing the effect of cigarette making materials on the level of filter ventilation was developed and evaluated. The developed model was expressed in terms of a linear and quadratic relationship which was validated with experimental measurements for different porosity of plug wrap and tipping paper, unencapsulated pressure drop of filter plug and cigarette column and vent position. Forty-six experimental frequencies were determined as a result of using three levels with five factors Box-Behnken design and analyzed by the multiple regression analysis with backward stepwise in STATISTICA/PC under restricted conditions. The four factors, except filter pressure drop variable, were statistically significant at the level of 0.05 but most of all linear by linear interactions were comparatively lower significant. By the analysis of linear and quadratic regression coefficient, filter ventilation of the cigarette was affected by porosity of plugwrap (5.87, -4.25), porosity of tip paper (5.68, -1.00), vent position (-3.87, 3.08), tobacco column pressure drop (2.56, 0.66), and filter pressure drop (1.50, 0.58) in the decreasing order. It should be emphasized that the major conclusion of this study was not that any particular parameter was linear or quadratic on any limit scale, but that there were highly significant relationships among factors involving linear, quadratic and their interaction and perhaps even linearity between and within factors. While, there is also quite strong evidence that vent position from mouth end and cigarette making materials are reverse relationship on this experimental model. On the basis of the result, it can be concluded that the porosity of the plug wrap and tipping paper has a marked effect on degree of filter ventilation rate. The F-value of plug wrap and tipping paper porosity among five factors were 39.2 and 36.8 respectively with P-value of 0.000 indicating higher significant for both factors. According to the analysis of variance, the model fitted for filter ventilation was significant at 5% confidence level and the coefficient of determination ($R^2$=0.84) was the proportion to variability in the data well fitted for by the model.

  • PDF

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

Application of Recurrent Neural-Network based Kalman Filter for Uncertain Target Models (불확정 표적 모델에 대한 순환 신경망 기반 칼만 필터 설계)

  • DongBeom Kim;Daekyo Jeong;Jaehyuk Lim;Sawon Min;Jun Moon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.10-21
    • /
    • 2023
  • For various target tracking applications, it is well known that the Kalman filter is the optimal estimator(in the minimum mean-square sense) to predict and estimate the state(position and/or velocity) of linear dynamical systems driven by Gaussian stochastic noise. In the case of nonlinear systems, Extended Kalman filter(EKF) and/or Unscented Kalman filter(UKF) are widely used, which can be viewed as approximations of the(linear) Kalman filter in the sense of the conditional expectation. However, to implement EKF and UKF, the exact dynamical model information and the statistical information of noise are still required. In this paper, we propose the recurrent neural-network based Kalman filter, where its Kalman gain is obtained via the proposed GRU-LSTM based neural-network framework that does not need the precise model information as well as the noise covariance information. By the proposed neural-network based Kalman filter, the state estimation performance is enhanced in terms of the tracking error, which is verified through various linear and nonlinear tracking problems with incomplete model and statistical covariance information.

Control of mobile robots based on a linear optic-flow algorithm (선형 Optic flow 알고리듬을 이용한 이동 로봇 제어)

  • 최대일;한웅기;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1149-1152
    • /
    • 1996
  • Recently visual servo control is an important feature of an intelligent robot system. In this paper, we presents a Kalman filter approach for estimation of the linear optic flow model which is utilized in the visual servoing of a mobile robot. The proposed method is also compared with the conventional least mean square method via computer simulation.

  • PDF

Design of digital filters using linear programming (선형 프로그래밍에 의한 디지탈 필터의 설계)

  • 조성현;임화영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.137-141
    • /
    • 1986
  • This paper presents optimal recursive digital filter design to meet simultaneous specifications of magnitude and linear phase characteristics. As is well known, the overshoot in the vicinity of discontinuity is hight. The technique using linear programming (the dual programming) is choosing more specification points in the vicinity of band limit frequency. The resulting filter can shown improved response and numerical accuracy with reduced nonuniform specification points in frequency domain.

  • PDF

Analysis and Implementation of Linear Combination of Weighted Order Statistic Filters (Linear Combination of Weighted Order Statistic 필터의 분석과 구현)

  • 송종환;이용훈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.21-27
    • /
    • 1994
  • Linear combination of weighted order statistic(LWOS) filters, which is an extension of stack filters, can represent any Boolean function(BF) or its extension. Which is called the extended BF(EBF). In this paper, we present a procedure for finding an LWOS filter of the simplest type from LWOS filters which are equivalent to a given BF or EBF. In addition, a property that is useful for implementing an LWOS filter is derived and an algorithm for LWOS filtering is presented.

  • PDF

Efficient DFDC Filter Design Using Interpolated Fourth-Order Polynomials (IFOP를 사용한 효과적인 DFDC 필터 설계)

  • 양세정;장영범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.609-614
    • /
    • 2003
  • In this paper, a new filter structure to improve frequency response characteristics in CIC(Cascaded Integrator-Comb) decimation filters is proposed. Conventional filters improve passband characteristics, but they make worse aliasing band characteristics. In this paper, we propose a new filter which is called IFOP(Interpolated Fourth-Order Polynomials). By using this proposed filter, passband droop and aliasing band attenuation are simultaneously improved. Since proposed filter needs only one multiplication, computation is not much. And overall linear phase characteristics are maintained since the proposed filter is also linear phase. Finally, implementation cost of the proposed filter is compared with those of conventional filters.

An Analytic Method for Measuring Accurate Fundamental Frequency Components (기본파 성분의 정확한 측정을 위한 해석적 방법)

  • Nam, Sun-Yeol;Gang, Sang-Hui;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.175-182
    • /
    • 2002
  • This paper proposes an analytic method for measuring the accurate fundamental frequency component of a fault current signal distorted with a DC-offset, a characteristic frequency component, and harmonics. The proposed algorithm is composed of four stages: sine filer, linear filter, Prony's method, and measurement. The sine filter and the linear filter eliminate harmonics and the fundamental frequency component, respectively. Then Prony's method is used to estimate the parameters of the DC-offset and the characteristic frequency component. Finally, the fundamental frequency component is measured by compensating the sine-filtered signal with the estimated parameters. The performance evaluation of the proposed method is presented for a-phase to around faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault current signals under different fault locations and fault inception angles. It is shown that the analytic method accurately measures the fundamental frequency component regardless of the characteristic frequency component as well as the DC-offset.