• 제목/요약/키워드: linear equations

검색결과 2,497건 처리시간 0.026초

GROWTH OF SOLUTIONS TO LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS OF [p, q]-ORDER IN THE COMPLEX PLANE

  • Biswas, Nityagopal;Tamang, Samten
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1217-1227
    • /
    • 2018
  • In the paper, we study the growth and fixed point of solutions of high order linear differential equations with entire coefficients of [p, q]-order in the complex plane. We improve and extend some results due to T. B. Cao, J. F. Xu, Z. X. Chen, and J. Liu, J. Tu, L. Z. Shi.

A NOTE ON THE DISPERSION RELATION OF THE MODIFIED BOUSSINSQ EQUATIONS

  • Cho, Yong-Sik;Lee, Chang-hoon
    • Water Engineering Research
    • /
    • 제1권4호
    • /
    • pp.293-298
    • /
    • 2000
  • Optimal values of $\alpha$ characterizing the linear dispersion property in the modified Boussinesq equations are determined by minimizing the combined relative errors of the phase and group velocities. The value of $\alpha$ is fixed in previous studies, whereas it is varying in the present study. The phase and group velocities are calculated by using variable $\alpha$ and compared to those of the linear Stokes wave theory and previous studies. It is found that the present study produces the best match to the linear Stokes theory.

  • PDF

Some Identities Involving Euler Polynomials Arising from a Non-linear Differential Equation

  • Rim, Seog-Hoon;Jeong, Joohee;Park, Jin-Woo
    • Kyungpook Mathematical Journal
    • /
    • 제53권4호
    • /
    • pp.553-563
    • /
    • 2013
  • We derive a family of non-linear differential equations from the generating functions of the Euler polynomials and study the solutions of these differential equations. Then we give some new and interesting identities and formulas for the Euler polynomials of higher order by using our non-linear differential equations.

Growth order of Meromorphic Solutions of Higher-order Linear Differential Equations

  • Xu, Junfeng;Zhang, Zhanliang
    • Kyungpook Mathematical Journal
    • /
    • 제48권1호
    • /
    • pp.123-132
    • /
    • 2008
  • In this paper, we investigate higher-order linear differential equations with entire coefficients of iterated order. We improve and extend the result of L. Z. Yang by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen and the extended Wiman-Valiron theory by Wang and Yi. We also consider the nonhomogeneous linear differential equations.

ON GROWTH PROPERTIES OF TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS OF HIGHER ORDER

  • Biswas, Nityagopal;Datta, Sanjib Kumar;Tamang, Samten
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1245-1259
    • /
    • 2019
  • In the paper, we study the growth properties of meromorphic solutions of higher order linear differential equations with entire coefficients of [p, q] - ${\varphi}$ order, ${\varphi}$ being a non-decreasing unbounded function and establish some new results which are improvement and extension of some previous results due to Hamani-Belaidi, He-Zheng-Hu and others.

F.A.M.을 이용한 공동 내부의 유동해석 (Analysis of Flow Field in Cavity Using Finite Analytic Method)

  • 박명규;정정환;김동진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제15권4호
    • /
    • pp.46-53
    • /
    • 1991
  • In the present study, Navier-Stokes equation is numerically solved by use of a Finite analytic method to obtain the 2-dimensional flow field in the square cavity. The basic idea of F.A.M. is the incorporation of local analytic solutions in the numerical solution of linear or non-linear partial differential equations. In the F.A.M., the total problem is subdivided into a number of all elements. The local analytic solution is obtained for the small element in which the governing equation, if non-linear, to be linearized. The local analytic solutions are then expressed in algebraic form and are overlapped to cover the entire region of the problem. The assembly of these local analytic solutions, which still preserve the overall nonlinearity of the governing equations, results in a system of linear algebraic equations. The system of algebraic equations is then solved to provide the numerical solutions of the total problem. The computed flow field shows the same characteristics to physical concept of flow phenomena.

  • PDF

GROWTH AND FIXED POINTS OF MEROMORPHIC SOLUTIONS OF HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Xu, Jun-Feng;Yi, Hong-Xun
    • 대한수학회지
    • /
    • 제46권4호
    • /
    • pp.747-758
    • /
    • 2009
  • In this paper, we investigate the growth and fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives. Because of the restriction of differential equations, we obtain that the properties of fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives are more interesting than that of general transcendental meromorphic functions. Our results extend the previous results due to M. Frei, M. Ozawa, G. Gundersen, and J. K. Langley and Z. Chen and K. Shon.

기호 비선형 방정식의 해석적 선형화 (Analytic Linearization of Symbolic Nonlinear Equations)

  • 송성재;문홍기
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.145-151
    • /
    • 1995
  • The first-order Taylor series expansion can be evaluated analytically from the formulated symbolic nonlinear dynamic equations. A closed-form linear dynamic euation is derived about a nominal trajectory. The state space representation of the linearized dynamics can be derived easily from the closed-form linear dynamic equations. But manual symbolic expansion of dynamic equations and linearization is tedious, time-consuming and error-prone. So it is desirable to manipulate the procedures using a computer. In this paper, the analytic linearization is performed using the symbolic language MATHEMATICA. Two examples are given to illustrate the approach anbd to compare nonlinear model with linear model.

  • PDF