• Title/Summary/Keyword: linear equations

Search Result 2,502, Processing Time 0.029 seconds

Vibration Analysis for the In-plane Motions of a Semi-Circular Pipe Conveying Fluid Considering the Geometric Nonlinearity (기하학적 비선형성을 고려한 유체를 수송하는 반원관의 면내운동에 대한 진동 해석)

  • 정진태;정두한
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2012-2018
    • /
    • 2004
  • The vibration of a semi-circular pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized-$\alpha$ method. From these results, we should consider the geometric nonlinearity to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

Vibration Characteristics of a Curved Pipe Conveying Fluid with the Geometric Nonlinearity (기하학적 비선형성을 갖는 유체를 수송하는 곡선관의 진동 특성)

  • Jung, Du-Han;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.793-798
    • /
    • 2004
  • The vibration of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the extended Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. From these results, we should consider the geometric nonlinearity to analyze the dynamics of a curved pipe conveying fluid more precisely.

  • PDF

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.

Development of Practical Dispersion-Correction Scheme for Propagation of Tsunamis (지진해일 전파모의를 위한 실용적인 분산보정기법의 개발)

  • Sohn, Dae-Hee;Cho, Yong-Sik;Ha, Tae-Min;Kim, Sung-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.551-555
    • /
    • 2006
  • In this study, new dispersion-correction terms are added to a leap-frog finite difference scheme for the linear shallow-water equations with the purpose of considering dispersion effects of the linear Boussinesq equations for propagation of tsunamis. The numerical model developed in this study is tested to the problem that the initial free surface displacement is a Gaussian hump over a constant water depth, and the predicted numerical results are compared with analytical solutions. The results of the present numerical model are accurate in comparison with those of existing models.

Periodic Solutions of a System of Piecewise Linear Difference Equations

  • Tikjha, Wirot;Lapierre, Evelina
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.401-413
    • /
    • 2020
  • In this article we consider the following system of piecewise linear difference equations: xn+1 = |xn| - yn - 1 and yn+1 = xn + |yn| - 1. We show that when the initial condition is an element of the closed second or fourth quadrant the solution to the system is either a prime period-3 solution or one of two prime period-4 solutions.

UNIFORM Lp-CONTINUITY OF THE SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS

  • Kim, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.491-498
    • /
    • 2013
  • This note is concerned with the uniform $L^p$-continuity of solution for the stochastic differential equations under Lipschitz condition and linear growth condition. Furthermore, uniform $L^p$-continuity of the solution for the stochastic functional differential equation is given.

Impact of Hand-Held Technology for Understanding Linear Equations and Graphs

  • Kwon, Oh-Nam
    • Research in Mathematical Education
    • /
    • v.6 no.1
    • /
    • pp.81-96
    • /
    • 2002
  • This article describes a research project that examined the impact of hand-held technology on students' understanding linear equations and graphs in multiple representations. The results indicated that students in the graphing-approach classes were significantly better at the components of interpreting. No significant differences between the graphing-approach and traditional classes were found fur translation, modeling, and algebraic skills. Further, students in the graphing-approach classes showed significant improvements in their attitudes toward mathematics and technology, were less anxious about mathematics, and rated their class as more interesting and valuable.

  • PDF

ANGULAR DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Wu, Zhaojun;Sun, Daochun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1329-1338
    • /
    • 2007
  • In this paper, we study the location of zeros and Borel direction for the solutions of linear homogeneous differential equations $$f^{(n)}+A_{n-1}(z)f^{(n-1)}+{\cdots}+A_1(z)f#+A_0(z)f=0$$ with entire coefficients. Results are obtained concerning the rays near which the exponent of convergence of zeros of the solutions attains its Borel direction. This paper extends previous results due to S. J. Wu and other authors.