• Title/Summary/Keyword: linear elasticity

Search Result 255, Processing Time 0.045 seconds

An embedded crack model for failure analysis of concrete solids

  • Dujc, Jaka;Brank, Bostjan;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.331-346
    • /
    • 2010
  • We present a quadrilateral finite element with an embedded crack that can be used to model tensile fracture in two-dimensional concrete solids and the crack growth. The element has kinematics that can represent linear jumps in both normal and tangential displacements along the crack line. The cohesive law in the crack is based on rigid-plasticity with softening. The required material data for the concrete failure analysis are the constants of isotropic elasticity and the mode I softening curve. The results of two well known tests are presented in order to illustrate very satisfying performance of the presented approach to simulate failure of concrete solids.

The refined theory of 2D quasicrystal deep beams based on elasticity of quasicrystals

  • Gao, Yang;Yu, Lian-Ying;Yang, Lian-Zhi;Zhang, Liang-Liang
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.411-427
    • /
    • 2015
  • Based on linear elastic theory of quasicrystals, various equations and solutions for quasicrystal beams are deduced systematically and directly from plane problem of two-dimensional quasicrystals. Without employing ad hoc stress or deformation assumptions, the refined theory of beams is explicitly established from the general solution of quasicrystals and the Lur'e symbolic method. In the case of homogeneous boundary conditions, the exact equations and exact solutions for beams are derived, which consist of the fourth-order part and transcendental part. In the case of non-homogeneous boundary conditions, the exact governing differential equations and solutions under normal loadings only and shear loadings only are derived directly from the refined beam theory, respectively. In two illustrative examples of quasicrystal beams, it is shown that the exact or accurate analytical solutions can be obtained in use of the refined theory.

Surface effects on vibration and buckling behavior of embedded nanoarches

  • Ebrahimi, Farzad;Daman, Mohsen;Fardshad, Ramin Ebrahimi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The present paper deals with the free vibration and buckling problem with consideration of surface properties of circular nanobeams and nanoarches. The Gurtin-Murdach theory is used for investigating the surface effects parameters including surface tension, surface density and surface elasticity. Both linear and nonlinear elastic foundation effect are considered on the circular curved nanobeam. The analytically Navier solution is employed to solve the governing equations. It is obviously detected that the natural frequencies of a curved nanobeams is substantially influenced by the elastic foundations. Besides, it is revealed that by increasing the thickness of curved nanobeam, the influence of surface properties and elastic foundations reduce to vanished, and the natural frequency and critical buckling load turns into to the corresponding classical values.

Graphic Deformation Algorithm for Haptic Interface System (촉각시스템을 위한 그래픽 변형 알고리즘)

  • Kang, Won-Chan;Kim, Sung-Cheol;Kim, Dong-Ok;Kim, Won-Bae;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.149-154
    • /
    • 2002
  • In this paper, we propose a new graphic deformation algorithm for haptic interface system. Our deformable model is based on non-linear elasticity, anisotropy behavior and the finite element method. Also we developed controller for high-speed communication. The proposed controller is based on the PCI/FPGA technology, which could progress the capability of the position calculating and the force data transmitting. The haptic system is composed of the 6DOF force display device, the high-speed controller, HIR library for 3D graphic deformation algorithm and the haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. We demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we programmed the simulation of force reflecting. As the result of experiment, we found that it has high stability and easy to control for deformable object than some other systems.

A stochastic model based tracking control scheme for flexible robot manipulators

  • Lee, Kumjung;Nam, kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.152-155
    • /
    • 1994
  • The presence of joint elasticity or the arm flexibility causes low damped oscillatory position error along a desired trajectory. We utilize a stochastic model for describing the fast dynamics and the approximation error. A second order shaping filter is synthesized such that its spectrum matches that of the fast dynamics. Augmenting the state vector of slow part with that of shaping filter, we obtain a nonlinear dynamics to which a Gaussian white noise is injected. This modeling approach leads us to the design of an extended Kalman filter(KEF) and a linear quadratic Gaussian(LQG) control scheme. We present the simulation results of this control method. The simulation results show us that our Kalman filtering approach is one of prospective methods in controlling the flexible arms.

  • PDF

Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites (직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙)

  • 김대용;이명규;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF

The Energy Release Rate for Cracks in a Rotating Continuum (균열을 내재한 회전체의 에너지방출률)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.330-337
    • /
    • 1995
  • For a rotating body with cracks, the new energy release rate equation is presented. The derived equation is different from the other researcher's results. It is a path-independent integral which excluded the derivatives of displacements near the crack tip, thereby improving the numerical accuracy of the energy release rate computation. Moreover, as the equation was derived on basis of the energy principle and non-linear elasticity without assumptions, it can applied to the cracked body with arbitrary shape under elastic-plastic deformation. Several examples are treated to demonstrate the efficiency and accuracy of the proposed method compared to existing methods.

Design of a Vibration Absorber for an Elastically Suspended Rigid Body (단일 진동체의 진동 흡진기 설계 기법)

  • Kim, Dong-Wook;Park, Yong-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.325.2-325
    • /
    • 2002
  • A new methodology is presented for the multi-degree-of-freedom vibration absorber for an elastically suspended rigid body with the planes of symmetry in general motion. Unlike the common single degree-of-freedom vibration absorber, the presented methodology makes use of both linear and rotational properties of the absorber. It is suggested that an absorber is designed separately for the in-plane and out-of-plane axes of vibration and combined the two cases for a six-degree-of-freedom absorber. (omitted)

  • PDF

Analytical solution of two-layer beam including interlayer slip and uplift

  • Kroflic, Ales;Planinc, Igor;Saje, Miran;Cas, Bojan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.667-683
    • /
    • 2010
  • A mathematical model and its analytic solution for the analysis of stress-strain state of a linear elastic two-layer beam is presented. The model considers both slip and uplift at the interface. The solution is employed in assessing the effects of transverse and shear contact stiffnesses and the thickness of the interface layer on behaviour of nailed, two-layer timber beams. The analysis shows that the transverse contact stiffness and the thickness of the interface layer have only a minor influence on the stress-strain state in the beam and can safely be neglected in a serviceability limit state design.

Propagation of love-type wave in a temperature dependent crustal Layer

  • Kakar, Rajneesh;Kakar, Shikha;Narang, Rajeev Kumar
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.237-241
    • /
    • 2017
  • The present study deals with the propagation of Love wave (a type of surface wave) in crustal layer having temperature dependent inhomogeneity. It is assumed that the inhomogeneity in the crustal layer arises due to linear temperature variation in rigidity and density. The upper boundary of the crustal layer is traction free. Numerical results for Love wave are discussed by plotting analytical curves between phase velocity against wave number and stress against depth in the presence of inhomogeneity and temperature parameters. The effects boundary condition on the Love wave propagation in the crustal layer is also analyzed. The results presented in this study would be useful for seismologists and geologists.