DOI QR코드

DOI QR Code

Propagation of love-type wave in a temperature dependent crustal Layer

  • Received : 2015.12.25
  • Accepted : 2017.01.12
  • Published : 2017.03.25

Abstract

The present study deals with the propagation of Love wave (a type of surface wave) in crustal layer having temperature dependent inhomogeneity. It is assumed that the inhomogeneity in the crustal layer arises due to linear temperature variation in rigidity and density. The upper boundary of the crustal layer is traction free. Numerical results for Love wave are discussed by plotting analytical curves between phase velocity against wave number and stress against depth in the presence of inhomogeneity and temperature parameters. The effects boundary condition on the Love wave propagation in the crustal layer is also analyzed. The results presented in this study would be useful for seismologists and geologists.

Keywords

References

  1. Abo-Dadab, S.M., Abd-Alla, S.M. and Khan, A. (2016), "Rotational effects on Rayleigh, Love and Stonely waves in non-homogeneous reinforced anisotropic general viscoelastic media of higher order", Struct. Eng. Mech., 58(1), 181-197. https://doi.org/10.12989/sem.2016.58.1.181
  2. Achenbach, J.D. and Balogun, O. (2010), "Anti-plane surface waves on a half-space with depth-dependent properties", Wave Motion, 47(1), 59-65. https://doi.org/10.1016/j.wavemoti.2009.08.002
  3. Chattaraj, R., Samal, S.K. and Mahanti, N.C. (2013), "Dispersion of Love Wave propagating in irregular anisotropic porous stratum under initial stress", Int. J. Geomech., 13(4), 402-408. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000230
  4. Deresiewicz, H. (1962), "A note on Love waves in a homogeneous crust overlying an inhomogeneous substratum", Bull. Seism. Soc. Am., 52(3), 639-645.
  5. Du, J.K., Xian, K., Wang, J. and Yong, Y.K. (2008), "Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid", Acta Mechanica Solida Sinica, 21(6), 542-548. https://doi.org/10.1007/s10338-008-0865-7
  6. Emery, A.F. and Fadale, T.D. (1997), "Handling temperature dependent properties and boundary conditions in stochastic finite element analysis", Numer. Heat Transfer, Part A, 31(1), 37-51. https://doi.org/10.1080/10407789708914024
  7. Gubbins, D. (1990), Seismology and Plate Tectonics, Cambridge, Cambridge University Press.
  8. Gupta, S., Majhi, D.K., Kundu, S. and Vishwakarma, S.K. (2013), "Propagation of Love waves in non-homogeneous substratum over initially stressed heterogeneous half-space", Appl. Math. Mech., 34(2), 249-258. https://doi.org/10.1007/s10483-013-1667-7
  9. Kadian, P. and Singh, J. (2010), "Effect of size of barrier on reflection of Love Waves", Int. J. Eng. Technol., 2(6), 458-461.
  10. Kundu, S., Gupta, S. and Majhi, D.K. (2013), "Love wave propagation in porous rigid layer lying over an initially stressed half space", Appl. Phys. Math., 3(2), 140-142.
  11. Lee, H.J. and. Saravanos, D.A. (1998), "The effect of temperature dependent material properties on the response of piezoelectric composite materials", J. Intel. Mat. Syst. Struct., 9(7), 503-508. https://doi.org/10.1177/1045389X9800900702
  12. Lokajicek, T., Rudajev, V., Dwivedi, R.D., Goel, R.K. and Swarup, A. (2012), "Influence of thermal heating on elastic wave velocities in granulate", Int. J. Rock Mech. Min. Sci., 54, 1-8. https://doi.org/10.1016/j.ijmecsci.2011.04.004
  13. Love, A.E.H. (1927), The mathematical theory of Elasticity, Cambridge, Cambridge University press.
  14. Madan, D.K., Kumar R. and Sikka, J.S. (2014), "Love wave propagation in an irregular fluid saturated porous anisotropic layer with rigid boundary", J. Appl. Sci. Res., 10(4), 281-287.
  15. Manna, S., Kundu, S. and Gupta, S. (2013), "Love wave propagation in a piezoelectric layer overlying in an inhomogeneous elastic half-space", J. Vib. Control., doi: 1077546313513626.
  16. Schreiber, E., Anderson, O.L. and Soga, N. (1973), Elastic Constants and Their Measurement, Mc Graw-Hill, New York, pp.196.
  17. Sun, D. and Luo, S.N. (2011), "Wave propagation of functionally graded material plates in thermal environments", Ultrasonics, 51(8), 940-952. https://doi.org/10.1016/j.ultras.2011.05.009
  18. Tillmann, A.R., Borges, V.L., Guimarães, G., Silva, A.L.F.L. and Silva, S.M.M.L. (2008), "Identification of temperaturedependent thermal properties of solid materials", J. Braz. Soc. Mech. Sci. Eng., 30(4), 269-278.