Acknowledgement
Supported by : National Natural Science Foundation
References
- Bak, P. (1985), "Phenomenological theory of icosahedron incommensurate (quasiperiodic) order in Mn-Al alloys", Phys. Rev. Lett., 54(14), 1517-1519. https://doi.org/10.1103/PhysRevLett.54.1517
- Barrett, K.E. and Ellis, S. (1988), "An exact theory of elastic plates", Int. J. Solid. Struct., 24(9), 859-880. https://doi.org/10.1016/0020-7683(88)90038-8
- Cheng, S. (1979), "Elasticity theory of plates and a refined theory", ASME J. Appl. Mech., 46(3), 644-650. https://doi.org/10.1115/1.3424620
- Chernikov, M.A., Ott, H.R., Bianchi, A., Migliori, A. and Darling, T.W. (1998), "Elastic moduli of a single quasicrystal of decagonal Al-Ni-Co: Evidence for transverse elastic isotropy", Phys. Rev. Lett., 80(2), 321-324. https://doi.org/10.1103/PhysRevLett.80.321
- Ding, D.H., Yang, W.G., Hu, C.Z. and Wang, R.H. (1993), "Generalized elasticity theory of quasicrystals", Phys. Rev. B, 48(10), 7003-7010. https://doi.org/10.1103/PhysRevB.48.7003
- Edagawa, K. (2007), "Phonon-phason coupling in decagonal quasicrystals", Philos. Mag., 87(18-21), 2789-2798. https://doi.org/10.1080/14786430701264178
- Fan, T.Y. (2011), The Mathematical Elasticity of Quasicrystals and Its Applications, Springer, Heidelberg.
- Fan, T.Y. and Mai, Y.W. (2004), "Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials", Appl. Mech. Rev., 57(5), 325-343. https://doi.org/10.1115/1.1763591
- Gao, Y. (2009), "The appropriate edge conditions for two-dimensional quasicrystal semi-infinite strips with mixed edge-data", Int. J. Solid. Struct., 46(9), 1849-1855. https://doi.org/10.1016/j.ijsolstr.2008.12.017
- Gao, Y. and Ricoeur, A. (2011), "The refined theory of one-dimensional quasicrystals in thick plate structures", ASME J. Appl. Mech., 78(3), 031021. https://doi.org/10.1115/1.4003367
- Gao, Y. and Wang, M.Z. (2004), "The refined theory of magnetoelastic rectangular beams", Acta Mech., 173(1-4), 147-161. https://doi.org/10.1007/s00707-004-0171-5
- Gao, Y. and Wang, M.Z. (2005), "A refined beam theory based on the refined plate theory", Acta Mech., 177(1-4), 191-197. https://doi.org/10.1007/s00707-005-0223-5
- Gao, Y., Xu, B.X. and Zhao, B.S. (2007), "The refined theory of beams for a transversely isotropic body", Acta Mech., 191(1-2), 109-122. https://doi.org/10.1007/s00707-006-0436-2
- Gao, Y. and Zhao, B.S. (2007), "A note on the nonuniqueness of the Boussinesq-Galerkin solution in elastic theory", Int. J. Solid. Struct., 44(5), 1685-1689. https://doi.org/10.1016/j.ijsolstr.2006.06.024
- Gao, Y. and Zhao, B.S. (2009), "General solutions of three-dimensional problems for two-dimensional quasicrystals", Appl. Math. Model., 33(8), 3382-3391. https://doi.org/10.1016/j.apm.2008.11.001
- Hu, C.Z., Wang, R.H. and Ding, D.H. (2000), "Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals", Rep. Prog. Phys., 63(1), 1-39. https://doi.org/10.1088/0034-4885/63/1/201
- Hu, C.Z., Wang, R.H., Yang, W.G. and Ding, D.H. (1996), "Point groups and elastic properties of two-dimensional quasicrystals", Acta Crystallogr. Sect. A, 52, 251-256.
- Janssen, T. (1992), "The symmetry operations for n-dimensional periodic and quasi-periodic structures", Z. Kristall., 198, 17-32. https://doi.org/10.1524/zkri.1992.198.1-2.17
- Jeong, H.C. and Steinhardt, P.J. (1993), "Finite-temperature elasticity phase transition in decagonal quasicrystals", Phys. Rev. B, 48(13), 9394-9403. https://doi.org/10.1103/PhysRevB.48.9394
- Levine, D. and Steinhardt, P.J. (1986), "Quasicrystals. 1. definition and structure", Phys. Rev. B, 34(2), 596-616.
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
- Lubensky, T.C., Ramaswamy, S. and Joner, J. (1985), "Hydrodynamics of icosahedral quasicrystals", Phys. Rev. B, 32(11), 7444-7452. https://doi.org/10.1103/PhysRevB.32.7444
- Lur'e, A.I. (1964), Three-dimensional problems of the theory of elasticity, Interscience, New York.
- Ovidko, I.A. (1992), "Plastic deformation and decay of dislocations in quasicrystals", Mater. Sci. Eng. A, 154(1), 29-33. https://doi.org/10.1016/0921-5093(92)90359-9
- Ronchetti, M. (1987), "Quasicrystals, an introduction overview", Philos. Mag. B, 56(2), 237-249. https://doi.org/10.1080/13642818708208530
- Shechtman, D., Blech, I., Gratias, D. and Cahn, J.W. (1984), "Metallic phase with long-range orientational order and no translational symmetry", Phys. Rev. Lett., 53(20), 1951-1953. https://doi.org/10.1103/PhysRevLett.53.1951
- Socolar, J.E.S., Lubensky, T.C. and Steinhardt, P.J. (1986), "Phonons, phasons and dislocations in quasi-crystals", Phys. Rev. B, 34(5), 3345-3360.
- Stadnik, Z. (1999), Physical Properties of Quasicrystals, Springer Series in Solid State Sciences, Springer, Berlin.
- Takeuchi, S. and Edagawa, K. (2007), Elasticity and plastic properties of quasicrystals, Elsevier, Amsterdam.
- Tanaka, K., Mitarai, Y. and Koiwa, M. (1996), "Elastic constants of Al-based icosahedral quasicrystals", Philos. Mag. A, 73(6), 1715-1723. https://doi.org/10.1080/01418619608243008
- Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibration of prismatic bars", Philos. Mag., 41(245), 744-746. https://doi.org/10.1080/14786442108636264
- Timoshenko, S.P. and Goodier, J.C. (1970), Theory of Elasticity, McGraw-Hill, New York.
- Wang, C.M., Reddy, J.N. and H., L.K. (2000), Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier, Amsterdam.
- Wang, F.Y. (1990), "Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic body. I. Plate problems", Int. J. Solid. Struct., 26(4), 455-470. https://doi.org/10.1016/0020-7683(90)90068-7
- Wollgarten, M., Beyss, M., Urban, K., Liebertz, H. and Koster, U. (1993), "Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism", Phys. Rev. Lett., 71(4), 549-552. https://doi.org/10.1103/PhysRevLett.71.549
- Zhao, B.S., Wu, D. and Wang, M.Z. (2013), "The refined theory and the decomposed theorem of a transversely isotropic elastic plate", Eur. J. Mech. A Solid, 39, 243-250. https://doi.org/10.1016/j.euromechsol.2012.12.002
Cited by
- Size-dependent effect on functionally graded multilayered two-dimensional quasicrystal nanoplates under patch/uniform loading vol.229, pp.8, 2018, https://doi.org/10.1007/s00707-018-2177-4
- An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions vol.16, pp.1, 2015, https://doi.org/10.12989/gae.2018.16.1.001
- Electric-elastic analysis of multilayered two-dimensional decagonal quasicrystal circular plates with simply supported or clamped boundary conditions vol.26, pp.9, 2021, https://doi.org/10.1177/1081286520981618