• Title/Summary/Keyword: linear elastic range

Search Result 138, Processing Time 0.025 seconds

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

p-Version Finite Element Analysis of Cracked Panels Based on Linear Elastic Fracture Mechanics (선형탄성파괴역학 이론에 의한 균열판의 p-Version 유한요소해석)

  • 윤영필;우광성;박병기;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.19-26
    • /
    • 1993
  • The p-version crack model based on integrals of Legendre polynomial and virtual crack extension method is proposed with its potential for application to stress intensity factor computations in linear elastic fracture mechanics. The main advantage of this model is that the data preparation effort is minimal because only a small number of elements are used and the high accuracy and the rapid rate of convergence can be achieved in the vicinity of crack tip. There are two important findings from this study. Firstly, the limit value, the strain energy of the exact solution can be estimated with successive three p-version approximations by ascertaining the approximations is entered the asymptotic range. Secondly, the rate of convergence of p-version model is almost twice that of h-version model on the basis of uniform or quasiuniform mesh refinement for the cracked panel problem subjected tension.

  • PDF

Multi-material polygonal topology optimization for functionally graded isotropic and incompressible linear elastic structures

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.261-270
    • /
    • 2024
  • This paper proposes an effective method for optimizing the structure of functionally graded isotropic and incompressible linear elastic materials. The main emphasis is on utilizing a specialized polytopal composite finite element (PCE) technique capable of handling a broad range of materials, addressing common volumetric locking issues found in nearly incompressible substances. Additionally, it employs a continuum model for bi-directional functionally graded (BFG) material properties, amalgamating these aspects into a unified property function. This study thus provides an innovative approach that tackles diverse material challenges, accommodating various elemental shapes like triangles, quadrilaterals, and polygons across compressible and nearly incompressible material properties. The paper thoroughly details the mathematical formulations for optimizing the topology of BFG structures with various materials. Finally, it showcases the effectiveness and efficiency of the proposed method through numerous numerical examples.

Shape Optimization of the H-shape Spacer Grid Spring Structure

  • Yoon, Kyung-Ho;Kim, Hyung-Kyu;Kang, Heung-Seok;Song, Kee-Nam;Park, Ki-Jong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.547-555
    • /
    • 2001
  • In pressurized light water reactor fuel assembly, spacer grids support nuclear fuel rods both laterally and vertically. The fuel rods are supported by spacer grid springs and grid dimples that are located in the grid cell. The support system allows for some thermal expansion and imbalance of the fuel rods. The imbalance is absorbed by elastic energy to prevent coolant flow- induced vibration damage. Design requirements are defined and a design process is established. The design process includes mathematical optimization as well as practical design method. The shape of the grid spring is designed to maintain its function during the lifetime of the fuel assembly. A structural optimization method is employed for the shape design. Since the optimization is carried out in the linear range of finite element analysis, the optimum solution is verified by nonlinear analysis. A good design is found and the final design is compared with the initial conceptual design. Commercial codes are utilized for structural analysis and optimization.

  • PDF

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

Inelastic Displacement Ratios for Smooth Hysteretic System Considering Characteristic Period of Earthquakes (지진의 특성주기를 고려한 완만한 곡선형 이력거동시스템의 비탄성 변위비)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In order to predict inelastic displacement response without nonlinear dynamic analysis, the equal displacement rule can be used for the structures with longer natural periods than the characteristic period, $T_g$, of earthquake record. In the period range longer than $T_g$, peak displacement responses of elastic systems are equal or larger than those of inelastic systems. In the period range shorter than $T_g$, opposite trend occurs. In the equal displacement rule, it is assumed that peak displacement of inelastic system with longer natural period than $T_g$ equals to that of elastic system with same natural period. The equal displacement rule is very useful for seismic design purpose of structures with longer natural period than $T_g$. In the period range shorter than $T_g$, the peak displacement of inelastic system can be simply evaluated from the peak displacement of elastic system by using the inelastic displacement ratio, which is defined as the ratio of the peak inelastic displacement to the peak elastic displacement. Smooth hysteretic behavior is more similar to actual response of real structural system than a piece-wise linear hysteretic behavior such as bilinear or stiffness degrading behaviors. In this paper, the inelastic displacement ratios of the smooth hysteretic behavior system are evaluated for far-fault and near-fault earthquakes. The simple formula of inelastic displacement ratio considering the effect of $T_g$ is proposed.

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Perez-Aparicio, Jose L.
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.5-25
    • /
    • 2018
  • A fully-coupled thermodynamic-based transient finite element formulation is proposed in this article for electric, magnetic, thermal and mechanic fields interactions limited to the linear case. The governing equations are obtained from conservation principles for both electric and magnetic flux, momentum and energy. A full-interaction among different fields is defined through Helmholtz free-energy potential, which provides that the constitutive equations for corresponding dual variables can be derived consistently. Although the behavior of the material is linear, the coupled interactions with the other fields are not considered limited to the linear case. The implementation is carried out in a research version of the research computer code FEAP by using 8-node isoparametric 3D solid elements. A range of numerical examples are run with the proposed element, from the relatively simple cases of piezoelectric, piezomagnetic, thermoelastic to more complicated combined coupled cases such as piezo-pyro-electric, or piezo-electro-magnetic. In this paper, some of those interactions are illustrated and discussed for a simple geometry.

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

A Methodology for Fatigue Reliability Assessment Considering Stress Range Distribution Truncation

  • Park, Jun Yong;Park, Yeun Chul;Kim, Ho-Kyung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1242-1251
    • /
    • 2018
  • Not all loads contribute to fatigue crack propagation in the welded detail of steel bridges when they are subjected to variable amplitude loading. For fatigue assessment, therefore, non-contributing stress cycles should be truncated. However, stress range truncation is not considered during typical fatigue reliability assessment. When applying the first order reliability method, stress range truncation occurs mismatch between the expected number of cycles to failure and the number of cycles obtained at the time of evaluation, because the expected number of cycles only counts the stress cycles that contribute to fatigue crack growth. Herein, we introduce a calibration factor to coordinate the expected number of cycles to failure to the equivalent value which includes both contributing and non-contributing stress cycles. The effectiveness of stress range truncation and the proposed calibration factor was validated via case studies.

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.