• Title/Summary/Keyword: linear beamforming

Search Result 81, Processing Time 0.023 seconds

A Study on the Linear Array Beamforming by Cross Correlation Matrix (상호상관 행렬을 이용한 선배열 빔형성 기법 연구)

  • 황수복;이성은
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.31-36
    • /
    • 2001
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise (S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. The improvement of beamforming is very important to detect modern underwater targets as noise reduction technology leads to considerably low-level acoustic emissions in the long range in complex environmental sea. In this paper, we proposed the spatial cross correlation beamforming (SCCBF) algorithm using cross correlation matrix of individual hydrophone pairs of linear array sensors. By the theoretical analysis and simulation, the proposed SCCBF is demonstrated that its performances compared to conventional beamforming (CBF) output can be obtain above 3dB of array gain and about half of beam width represented the bearing accuracy in target detection. Also, this paper presents sea test result of linear passive sonar system that the proposed algorithm implemented.

  • PDF

Wideband adaptive beamforming method using subarrays in acoustic vector sensor linear array (부배열을 이용한 음향벡터센서 선배열의 광대역 적응빔형성기법)

  • Kim, Jeong-Soo;Kim, Chang-Jin;Lee, Young-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.395-402
    • /
    • 2016
  • In this paper, a wideband adaptive beamforming approach for an acoustic vector sensor linear array is presented. It is a very important issue to estimate the stable covariance matrix for adaptive beamforming. In the conventional wideband adaptive beamforming based on coherent signal-subspace (CSS) processing, the error of bearing estimates is resulted from the focusing matrix estimation and the large number of data snapshot is necessary. To alleviate the estimation error and snapshot deficiency in estimating covariance matrix, the steered covariance matrix method in the pressure sensor is extended to the vector sensor array, and the subarray technique is incorporated. By this technique, more accurate azimuth estimates and a stable covariance matrix can be obtained with a small number of data snapshot. Through simulation, the azimuth estimation performance of the proposed beamforming method and a wideband adaptive beamforming based on CSS processing are assessed.

WCDMA Rreverse Link Beamforming Structure and its Performance Simulation (WCDMA 역방향 빔포밍 구조 및 성능 시뮬레이션)

  • 이재식;박영근;장태규;김재화
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.210-213
    • /
    • 2003
  • This paper presents a beamforming algorithm for the uplink application of a linear array antenna for WCDMA system. A steering beamforming algorithm is designed using a block DFT algorithm and its performance is analyzed and verified using computer simulations. Various environmental parameters such as the number of antenna elements, the number of users, the mobility of the target user, and the status of fast power control are reflected in the simulation study providing themselves as useful design and implementation guides for the reverse link beamforming of WCDMA system.

  • PDF

A Study for Beamforming Acoustic Holographic Method Using Linear Arrayed Microphones (직선 배열형 마이크로폰 어레이를 이용한 빔포밍 음향홀로그래픽법에 관한 연구)

  • Kim, Chun-Duck;Sim, Dong-Youn;Jang, Bee;Cha, Kyung-Hwan;Lee, Chai-Bong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.3-10
    • /
    • 2000
  • This paper proposes acoustic holographic measuring system to estimate an absolute position of sound source. Using the measured signals, the estimation of the position is calculated by the Cross-spectrum algorithm of the beamformed signal and a linear arrayed microphone's signals. As the results of comparing the reference microphone method with beamforming method through the measurement of sound field, the beamforming acoustic holographic method is progressed above 20 percent than that of a reference microphone method in the resolution, and the utility of the proposed system could be confirmed.

  • PDF

Achievable Rate of Beamforming Dual-hop Multi-antenna Relay Network in the Presence of a Jammer

  • Feng, Guiguo;Guo, Wangmei;Gao, Jingliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3789-3808
    • /
    • 2017
  • This paper studies a multi-antenna wireless relay network in the presence of a jammer. In this network, the source node transmits signals to the destination node through a multi-antenna relay node which adopts the amplify-and-forward scheme, and the jammer attempts to inject additive signals on all antennas of the relay node. With the linear beamforming scheme at the relay node, this network can be modeled as an equivalent Gaussian arbitrarily varying channel (GAVC). Based on this observation, we deduce the mathematical closed-forms of the capacities for two special cases and the suboptimal achievable rate for the general case, respectively. To reduce complexity, we further propose an optimal structure of the beamforming matrix. In addition, we present a second order cone programming (SOCP)-based algorithm to efficiently compute the optimal beamforming matrix so as to maximize the transmission rate between the source and the destination when the perfect channel state information (CSI) is available. Our numerical simulations show significant improvements of our propose scheme over other baseline ones.

Analysis on performance of grid-free compressive beamforming based on experiment (실험 기반 무격자 압축 빔형성 성능 분석)

  • Shin, Myoungin;Cho, Youngbin;Choo, Youngmin;Lee, Keunhwa;Hong, Jungpyo;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.179-190
    • /
    • 2020
  • In this paper, we estimated the Direction of Arrival (DOA) using Conventional BeamForming (CBF), adaptive beamforming and compressive beamforming. Minimum Variance Distortionless Response (MVDR) and Multiple Signal Classification (MUSIC) are used as the adaptive beamforming, and grid-free compressive sensing is applied for the compressive sensing beamforming. Theoretical background and limitations of each technique are introduced, and the performance of each technique is compared through simulation and real experiments. The real experiments are conducted in the presence of reflected signal, transmitting a sound using two speakers and receiving acoustic data through a linear array consisting of eight microphones. Simulation and experimental results show that the adaptive beamforming and the grid-free compressive beamforming have a higher resolution than conventional beamforming when there are uncorrelated signals. On the other hand, the performance of the adaptive beamforming is degraded by the reflected signals whereas the grid-free compressive beamforming still improves the conventional beamforming resolution regardless of reflected signal presence.

A Study on Adaptive Sparse Matrix Beamforming Algorithm of Error Beam Steering Vector for Target Estimation (목표물 추정을 위한 오차 빔 지향벡터의 적응 회소 행렬 빔형성 알고리즘 연구)

  • Kang, Kyoung Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.111-116
    • /
    • 2014
  • In this paper, we estimates the direction of arrival of desired a target using linear array antenna in wireless communication. Direction of arrival estimation is to estimate for desired target position among incident signals on receiver array antennas. This paper improved estimation of direction of arrival for target using optimum weight, high resolution adaptive beamforming algorithm, and sparse matrix for driection of arrival estimation. Through simulation, we showed that we are performance the analysis to compare general algorithm with proposed algorithm. We show that propose algorithm more improve for direction of estimation than general beamforming algorithm.

Widely-Linear Beamforming and RF Impairment Suppression in Massive Antenna Arrays

  • Hakkarainen, Aki;Werner, Janis;Dandekar, Kapil R.;Valkama, Mikko
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.383-397
    • /
    • 2013
  • In this paper, the sensitivity of massive antenna arrays and digital beamforming to radio frequency (RF) chain in-phase quadrature-phase (I/Q) imbalance is studied and analyzed. The analysis shows that massive antenna arrays are increasingly sensitive to such RF chain imperfections, corrupting heavily the radiation pattern and beamforming capabilities. Motivated by this, novel RF-aware digital beamforming methods are then developed for automatically suppressing the unwanted effects of the RF I/Q imbalance without separate calibration loops in all individual receiver branches. More specifically, the paper covers closed-form analysis for signal processing properties as well as the associated radiation and beamforming properties of massive antenna arrays under both systematic and random RF I/Q imbalances. All analysis and derivations in this paper assume ideal signals to be circular. The well-known minimum variance distortionless response (MVDR) beamformer and a widely-linear (WL) extension of it, called WL-MVDR, are analyzed in detail from the RF imperfection perspective, in terms of interference attenuation and beamsteering. The optimum RF-aware WL-MVDR beamforming solution is formulated and shown to efficiently suppress the RF imperfections. Based on the obtained results, the developed solutions and in particular the RF-aware WL-MVDR method can provide efficient beamsteering and interference suppressing characteristics, despite of the imperfections in the RF circuits. This is seen critical especially in the massive antenna array context where the cost-efficiency of individual RF chains is emphasized.

Implementation of the omnidirectional target bearing detector utilizing towed linear arrays (예인선배열 센서를 이용한 전방위 표적방위 탐지기 구현)

  • 이성은;천승용;황수복;이형욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise(S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. Detection of modern underwater targets is becoming increasingly difficult as noise reduction technology leads to considerably low-level acoustic emissions. Therefore, the improvement of beamforming is very important to detect modern underwater targets at the long range in the complex environmental sea. Also, to react to the fast attack mobiles such as torpedoes, port and starboard discrimination is required to be performed very quickly. In this paper, we proposed the implementation of omnidirectional target bearing detector without port and starboard ambiguity to detect effectively the low-level underwater targets. The port and starboard discrimination is performed by cardioid processing and the improvement of beamforming utilizes the cross correlation matrix of individual hydrophone pairs of linear array sensors. The sea test result shows that the system implemented is good for the detection of the low-level underwater targets.