• Title/Summary/Keyword: line monitoring

Search Result 1,483, Processing Time 0.033 seconds

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

Developing an Occupants Count Methodology in Buildings Using Virtual Lines of Interest in a Multi-Camera Network (다중 카메라 네트워크 가상의 관심선(Line of Interest)을 활용한 건물 내 재실자 인원 계수 방법론 개발)

  • Chun, Hwikyung;Park, Chanhyuk;Chi, Seokho;Roh, Myungil;Susilawati, Connie
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.667-674
    • /
    • 2023
  • In the event of a disaster occurring within a building, the prompt and efficient evacuation and rescue of occupants within the building becomes the foremost priority to minimize casualties. For the purpose of such rescue operations, it is essential to ascertain the distribution of individuals within the building. Nevertheless, there is a primary dependence on accounts provided by pertinent individuals like building proprietors or security staff, alongside fundamental data encompassing floor dimensions and maximum capacity. Consequently, accurate determination of the number of occupants within the building holds paramount significance in reducing uncertainties at the site and facilitating effective rescue activities during the golden hour. This research introduces a methodology employing computer vision algorithms to count the number of occupants within distinct building locations based on images captured by installed multiple CCTV cameras. The counting methodology consists of three stages: (1) establishing virtual Lines of Interest (LOI) for each camera to construct a multi-camera network environment, (2) detecting and tracking people within the monitoring area using deep learning, and (3) aggregating counts across the multi-camera network. The proposed methodology was validated through experiments conducted in a five-story building with the average accurary of 89.9% and the average MAE of 0.178 and RMSE of 0.339, and the advantages of using multiple cameras for occupant counting were explained. This paper showed the potential of the proposed methodology for more effective and timely disaster management through common surveillance systems by providing prompt occupancy information.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.

Simultaneous GC/MS Analyses of Organic acids and Amino acids in Urine using TMS-TFA derivative (TMS-TFA 유도체화를 이용한 소변여지 중 유기산과 아미노산의 GC/MS 동시분석)

  • Yoon, Hye-Ran
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.107-114
    • /
    • 2006
  • Early diagnosis and medical intervention are critical for the treatment of patients with metabolic disorders. A rapid analytical method was developed for simultaneous quantification of organic acids and amino acids in urine without labor-intensive pre-extraction procedure showing high sensitivity and specificity. A new method consisted of simple two-step trimethylsilyl (TMS)-trifluoroacetyl (TFA) derivatization using GC/MS-selective ion monitoring (SIM). Filter paper urine specimens were dried under nitrogen after being fortified with internal standard (tropate) in a mixture of distilled water and methanol. Methyl orange was added to the residue as indicator reagent. Silyl derivative of carboxylic functional group was followed by trifluoroacetyl derivative for amino functional group. N-methyl-N-(trimethylsilyl-trifluoroacetamide) and N-methyl-bistrifluoroacetamide were consecutively added and heated for 15-20 min at $65^{\circ}C-70^{\circ}C$, for TMS-TFA derivative, respectively. This reactant was analyzed by GC/MS-SIM. Linear dynamic range showed 0.001-50 mg with the detection limit of (S/N=3) 10-200 ng, and the quantification limit of 80-900 ng in urine. Correlation coefficient of regression line was 0.994-0.998. When the method was applied to the patients 'urine, it clearly differentiated the normal from the patient with metabolic disorder. The study showed that the developed method could be the method of choices in rapid and sensitive screening for organic aciduria and amino acidopathy.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

ESG Management Strategy and Performance Management Plan Suitable for Social Welfare Institutions : Centered on Cheonan City Social Welfare Foundation (사회복지기관에 적합한 ESG경영 전략도출 및 성과관리방안 : 천안시사회복지재단을 중심으로)

  • Hwang, Kyoo-il
    • Journal of Venture Innovation
    • /
    • v.6 no.3
    • /
    • pp.165-184
    • /
    • 2023
  • Since municipal welfare institutions operate for different purposes from general companies or public enterprises, ESG practice items and model construction should be conducted through various and comprehensive social welfare studies. Since there are not many studies available in domestic welfare institutions yet and there are no suitable ESG management utilization indicators, the Cheonan Welfare Foundation's strategy and management strategy system were established to spread the model to other welfare institutions and become a leading foundation through education and training. The foundation and front-line welfare institutions selected issues identification and key issues through the foundation's empirical analysis and criticality analysis, focusing on understanding ESG management and ways to establish a practice model that positively affects institutional image and business performance. Based on this, the promotion system was examined by establishing a performance management plan after deriving appropriate strategies and establishing a strategic system for social welfare institutions. Environmental and social responsibility, transparent management, safety management system establishment, emergency and prevention, user (customer) satisfaction system establishment, anti-corruption prevention and integrity ethics monitoring and evaluation, responsible supply chains, and community contribution programs. This study attempted to specifically present efforts to settle ESG management through the consideration of the Cheonan Welfare Foundation. Therefore, it is considered to be useful data for developing ESG management by referring to the systematic development process of the Cheonan City Restoration Foundation to develop ESG measurement indicators.

Selective collecting device utilizing the ecological characteristics of Ephemera orientalis (Ephemeroptera: Ephemeridae) (동양하루살이(하루살이목: 하루살이과) 성충의 생태적 특성을 활용한 선택적 포집 장치)

  • Jin Seok Byeon;Seong Uk Son;Jang Ho Lee;Min Kyung Kim;Rong Jin Jung;Dong Sik Ryu;Dong Gun Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.247-255
    • /
    • 2023
  • The occurrence of sudden strike pest events in urban areas is increasing as global warming intensifies, consequently, re causing harmful impacts. Studies on these incidents are fewer in number and insufficient compared to research on other nuisances such as mosquitoes and flies. Therefore, we conducted a study on the development of a selective collection method, using a filter layer to establish a monitoring system for Ephemera orientalis (Ephemeroptera: Ephemeridae), a species frequently identified as a sudden strike pest. Three sampling points were selected along the Hangang River in Namyangju, where E. orientalis outbreaks occur. Prototypes, consisting of four layers and with a light source attached to attract insects, were installed at each sampling point. Sampling was performed every 30 minutes between 19:00 and 22:30 in the month of June. The filter interval of each layer was adjusted so that the collected mayflies were distributed into specific layers. To evaluate the collection efficiency in line with the materials and the filter intervals, the optimal collection efficiency was investigated by combining two types of layer materials (stainless and acrylic) and filter intervals (1-5 mm). The optimal conditions were as follows: The selective collection efficiency was found to be highest at 96.5% when the interval of the selective target filter was 2.0 mm and there was one upper filter.

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.

Relationship between butterfly community and geographic location and ecological traits inhabiting agroecosystems (농업생태계에 서식하는 나비 군집 다양성과 이들에 영향을 주는 지리적 위치 및 생태적 특징과의 관계)

  • Jae-Young Lee;Sei-Woong Choi
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.712-719
    • /
    • 2023
  • This study investigated the diversity of butterfly communities inhabiting agroecosystems and examined the effect of latitude and longitude. The ecological characteristics of butterflies inhabiting rural ecosystems, such as habitat preference and food plant range, were also examined. This study was conducted from 2019 to 2022, selecting 10 locations nationwide and conducting line transect surveys every two weeks for four years, confirming a total of 112 species and 21,901 individuals. There was no difference in the number of species and individuals by region, but there was a clear difference in community composition. The most abundant species in rural ecosystems were Pieris rapae, Polygonia c-aureum, Zizeeria maha, and Colias erate, in that order. There was no significant difference in the number of species and individuals by latitude and longitude, indicating no peninsula effect. Habitat preference showed that butterflies preferring grasslands and forest edges were much more common than those preferring the forest interior, and the food breadth was mostly oligophagous, followed by monophagous and polyphagous. Butterflies inhabiting agroecosystems had ecological characteristics that preferred open spaces such as grasslands and forest edges or relatively diverse foods, due to the similarity of the environmental characteristics of the survey points. Through this study, we believe that continuous monitoring is necessary to determine whether climate change, which is currently underway and habitat change are affecting butterflies in agroecosystems.