DOI QR코드

DOI QR Code

Relationship between butterfly community and geographic location and ecological traits inhabiting agroecosystems

농업생태계에 서식하는 나비 군집 다양성과 이들에 영향을 주는 지리적 위치 및 생태적 특징과의 관계

  • Jae-Young Lee (National Institute of Ecology) ;
  • Sei-Woong Choi (Department of Environmental Education, Mokpo National University)
  • 이재영 (국립생태원) ;
  • 최세웅 (목포대학교 환경교육과 환경생태학실험실)
  • Received : 2023.12.07
  • Accepted : 2023.12.27
  • Published : 2023.12.31

Abstract

This study investigated the diversity of butterfly communities inhabiting agroecosystems and examined the effect of latitude and longitude. The ecological characteristics of butterflies inhabiting rural ecosystems, such as habitat preference and food plant range, were also examined. This study was conducted from 2019 to 2022, selecting 10 locations nationwide and conducting line transect surveys every two weeks for four years, confirming a total of 112 species and 21,901 individuals. There was no difference in the number of species and individuals by region, but there was a clear difference in community composition. The most abundant species in rural ecosystems were Pieris rapae, Polygonia c-aureum, Zizeeria maha, and Colias erate, in that order. There was no significant difference in the number of species and individuals by latitude and longitude, indicating no peninsula effect. Habitat preference showed that butterflies preferring grasslands and forest edges were much more common than those preferring the forest interior, and the food breadth was mostly oligophagous, followed by monophagous and polyphagous. Butterflies inhabiting agroecosystems had ecological characteristics that preferred open spaces such as grasslands and forest edges or relatively diverse foods, due to the similarity of the environmental characteristics of the survey points. Through this study, we believe that continuous monitoring is necessary to determine whether climate change, which is currently underway and habitat change are affecting butterflies in agroecosystems.

농업생태계는 생태계서비스 측면에서 수분매개, 해충조절, 영양물질 순환, 토양 유지나 비옥도 유지 및 유전자원 공급원 등 다양한 생태계 기능을 제공하지만 서식지 파편화를 포함한 환경오염 등 생물다양성을 위협하기도 한다. 이 연구에서는 선 조사법을 통하여 농업생태계에 서식하는 나비 군집 다양성을 알아보고 이들이 위도와 경도에 따라 어떠한 양상을 띠고 있는가를 알아보았다. 또한 농업생태계에 서식하는 나비들의 서식지 선호성과 먹이식물 범위 등 생태학적 특성도 알아보았다. 이번 연구는 2019년부터 2022년까지 4년 동안 전국적으로 10지점을 선정하여 2주 간격으로 선 조사법을 실시하였으며 총 112종 21,901개체를 확인하였다. 권역별로 종과 개체수는 차이를 나타내지 않았으나 군집 구성에서는 뚜렷한 차이가 있었다. 농업생태계에서 가장 많은 개체수로 확인된 종은 배추흰나비(Pieris rapae)였으며 네발나비(Polygonia c-aureum), 남방부전나비(Zizeeria maha), 노랑나비(Colias erate) 순이었다. 위도별, 경도별로도 종 수와 개체수 변화는 유의한 결과를 나타내지 않아 반도효과가 나타나지 않았다. 서식지 선호도는 초지와 숲 가장자리를 선호하는 나비가 숲 내부를 선호하는 종보다 훨씬 많은 것으로 나타났으며 먹이 범주는 협식성이 가장 많았고 단식성, 다식성 순서로 나타났다. 농업생태계에 서식하는 나비는 조사 지점의 환경이 비슷하여 위도 구배가 나타나지 않았으나 초지나 숲 가장자리와 같은 개방된 공간이나 비교적 다양한 먹이를 선호하는 생태학적 특성을 지녔다. 이번 연구를 통하여 현재 진행되고 있는 기후변화에 따른 농촌 경관 변화가 나비류에 영향을 미치는지 지속적인 모니터링이 필요하다고 제안한다.

Keywords

Acknowledgement

이 연구를 위하여 전국에서 나비 채집을 도와준 목포대학교 환경교육과 환경생태학실험실 조서윤과 동아시아환경생물연구소 김성수, 주재성, 이영준, 최수철, 나비마을 백유현, 전주아 선생님께 감사를 드립니다. 이 연구는 농업과학원 과제(PJ01346303) 지원으로 이루어졌습니다.

References

  1. Choi SC, JK Kim and JA Yang. 2022. Statistics of Korean Agriculture in the World. M. 172. Korea Rural Economic Institute. Naju, Korea. https://library.krei.re.kr/pyxis-api/1/digital-files/401755dd-1b13-4925-b83d-473f3c0dffdd
  2. Choi SW. 2004. Trends in butterfly species richness in response to the peninsular effect in South Korea. J. Biogeogr. 31:587-592. https://doi.org/10.1046/j.1365-2699.2003.01007.x
  3. Choi SW. 2019. Comparison of butterfly monitoring methods in agricultural landscapes in Korea. Korean J. Environ. Biol. 37:82-87. https://doi.org/10.11626/KJEB.2019.37.1.082
  4. Choi SW and C Jung. 2015. Diversity of insect pollinators in different agricultural crops and wild flowering plants in Korea: Literature review. J Apic. 30:191-201. https://doi.org/10.17519/apiculture.2015.09.30.3.191
  5. Dennis RL. 1993. Butterflies and Climate Change. Manchester University Press. Manchester, UK.
  6. Dexter E, G Rollwagen-Bollens and SM Bollens. 2018. The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling. Limnol. Oceanogr. Meth. 16:434-443. https://doi.org/10.1002/lom3.10257
  7. Foley JA, R DeFries, GP Asner, C Barford, G Bonan, SR Carpenter, FS Chapin, MT Coe, GC Daily, HK Gibbs, JH Helkowski, T Holloway, EA Howard, CJ Kucharik, C Monfreda, JA Patz, IC Prentice, N Ramankutty and PK Snyder. 2005. Global consequences of land use. Science 309:570-574. https://doi.org/10.1126/science.1111772
  8. Gilbert LE and MC Singer. 1975. Butterfly ecology. Annu. Rev. Ecol. Syst. 6:365-395. https://doi.org/10.1146/annurev.es.06.110175.002053
  9. Gilbert N and DA Raworth. 1996. Insects and temperature - a general theory. Can. Entomol. 128:1-13. https://doi.org/10.4039/Ent1281-1
  10. Hammer O and DA Harper. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. electron. 4:1-9.
  11. Holt EA and SW Miller. 2011. Bioindicators: Using organisms to measure. Nat. Educ. 3:8-13.
  12. Kim MH, SK Choi, SW Choi, C Jung, YJ Oh, MK Kim, J Eo, SJ Yeob and JH Bang. 2021. Selection of 30 indicator species for climate change in agroecosystem using analytical hierarchy process (AHP) and expert questionnaire survey. J Clim. Change Res. 12:421-429. https://doi.org/10.15531/ksccr.2021.12.5.421
  13. Kim SS and YH Seo. 2011. Life Histories of Korean Butterflies. Sakyejeol. Paju, Korea.
  14. Kingsolver JG. 2000. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L. Physiol. Biochem. Zool. 73:621-628. https://doi.org/10.1086/317758
  15. McCune B. 1999. PC-ORD. Multivariate Analysis of Ecological Data. Version 4. MjM Software Design. Gleneden Beach, Oregon, USA.
  16. McCune B and MJ Mefford. 2018. PC-ORD. Multivariate Analysis of Ecological Data. Version 7.08. Wild Blueberry Media. Corvallis, Oregon, USA.
  17. McGeoch MA. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biol. Rev. 73:181-201. https://doi.org/10.1017/S000632319700515X
  18. MEA. 2005. Ecosystems and Human Well-Being: Wetlands and Water Synthesis. Millennium Ecosystem Assessment. World Resources Institute. Washington, D.C., USA.
  19. Paoletti MG. 1995. Biodiversity, traditional landscapes and agroecosystem management. Landsc. Urban Plan. 31:117-128. https://doi.org/10.1016/0169-2046(94)01040-F
  20. Park JC. 2006. Concept and case of village grove. Keimyung Korean Stud. J. 33:233-262.
  21. R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org/
  22. Richards OW. 1940. The biology of the small white butterfly (Pieris rapae), with special reference to the factors controlling its abundance. J. Anim. Ecol. 9:243-288. https://doi.org/10.2307/1459
  23. Saunders DA, RJ Hobbs and CR Margules. 1991. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5:18-32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x
  24. Steffan-Dewenter I and T Tscharntke. 2000. Butterfly community structure in fragmented habitats. Ecol. Lett. 3:449-456. https://doi.org/10.1111/j.1461-0248.2000.00175.x
  25. Thomas CD. 2000. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. B-Biol. Sci. 267:139-145. https://doi.org/10.1098/rspb.2000.0978
  26. Tscharntke T, AM Klein, A Kruess, I Steffan-Dewenter and C Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8:857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
  27. Weibull AC, O ostman, and A Granqvist. 2003. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodiver. Conserv. 12:1335-1355. https://doi.org/10.1023/A:1023617117780
  28. Wiggins DA. 1999. The peninsular effect on species diversity: a reassessment of the avifauna of Baja California. Ecography 22:542-547. https://doi.org/10.1111/j.1600-0587.1999.tb01284.x