• Title/Summary/Keyword: limit theory

Search Result 588, Processing Time 0.024 seconds

POLYNOMIALITY OF THE EQUIVARIANT GROMOV-WITTEN THEORY OF ℙr-1

  • Lho, Hyenho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.573-591
    • /
    • 2021
  • We study the equivariant Gromov-Witten theory of ℙr-1 for all r ≥ 2. We prove a polynomiality property in r of the Gromov-Witten classes of ℙr-1. Using this polynomiality property, we define a set of polynomial valued classes in $H^*({\bar{M}}_{g,n})$ which generalize the limit of Witten's s-spin classes studied by Pandharipande, Pixton and Zvonkine.

Consolidation characteristics of slurry by Rowe Cell (Rowe Cell을 이용한 슬러리점토의 압밀특성)

  • 정규향;조진구;주재우;백원진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.875-883
    • /
    • 2003
  • Slurry clay has much higher water content than liquid limit of clay and even if small loads apply, it suffers a great settlement. Accordingly it is very difficult to perform a general consolidation test about slurry clay because of high water content. In this study consolidation tests have been performed successfully using Rowe Cell Tester about 1 remolding clay and 3 slurry clays with a water content of 100%, 133% and 150%. From the test results compression index characteristics, secondary compression index characteristics and consolidation coefficient characteristics have been investigated about slurry clay and remolding clay. Also two kinds of theory, by Terzaghi theory and by Mikasa theory, has been used to calculate consolidation coefficients. Compared to the calculation results, they had a similar value of consolidation coefficient. However if Mikasa theory is applied in the field design, the period which reach to the required consolidation degree will be much reduced compared to the period by Terzaghi theory because the time coefficient T$\_$v/ by Mikasa theory is far smaller than T$\_$v/ by Terzaghi theory.

  • PDF

Reliability index for non-normal distributions of limit state functions

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.365-372
    • /
    • 2017
  • Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems follow as normal distributions; therefore, there is a need to define a new reliability index for no-normal distributions. The main contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions.

Characterization of Potential Impact of Carbon Emissions under Speed Limit Enforcement on the Uninterrupted Flow (연속류 위험도로구간에서의 운전자의 도로속도규정 준수에 따른 온실가스 변화량 연구)

  • Lee, Jong Hak;Lee, Soong Bong
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.175-182
    • /
    • 2017
  • PURPOSES : Road sectors contribute approximately 16 % of total GHG emission rates in South Korea. Engineers and experts expend significant efforts to identify countermeasures for the reduction of carbon emission. This study aims to determine how total carbon emission rates change depending on whether or not there is speed limit enforcement. METHODS : In this study, Lamm's travel speed profile theory is first adopted to select the hazard road, which sections are designated as speed limit enforcement. Second, Motor Vehicle Emission Simulator (MOVES) was used to simulate the carbon emission on the road. RESULTS : The total carbon emission rate under speed limit enforcement was 10,773 g higher than the condition without speed limit enforcement in the designated road. This might affect acceleration, which can lead to increased emissions. CONCLUSIONS : There would be no researches about proving the relationship how speed limit enforcement has an effect on carbon emission. The result of our study can provide valuable guidelines regarding road safety and eco-friendly roads.

Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.

Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF

Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic (교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2002
  • In a strengthened bridge deck which received increased service loads, failure patterns of bridge deck vary depending on deck thickness, compressive strength of concrete, yielding strength of reinforcement, reinforcement ratio and additional strengthening ratio. General failure pattern that is most commonly reported as punching shear failure after the main rebar yields, followed by yielding of distributing rebar. In this paper, by Proposing a limit to the amount of strengthening material, a brittle failure can be prevented and a ductile failure mode similar to that developed in unstrengthened deck is derived. In order to calculated the limit strengthening ratio, the yield line theory and previously proposed plastic punching shear model have been used

Numerical simulation for Deformation Shape of Declined Multilayer Metals Material (다층금속 경사재의 변형양태의 수치적연구)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.124-128
    • /
    • 2004
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain by coaling method of clad sheet metals is investigated, in which the FEM is applied and J2G(J$_2$-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Declined Multilayer Metals Materials are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF

THE NUMBER OF THE CRITICAL POINTS OF THE STRONGLY INDEFINITE FUNCTIONAL WITH ONE PAIR OF THE TORUS-SPHERE VARIATIONAL LINKING SUBLEVELS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.527-535
    • /
    • 2008
  • Let $I{\in}C^{1,1}$ be a strongly indefinite functional defined on a Hilbert space H. We investigate the number of the critical points of I when I satisfies one pair of Torus-Sphere variational linking inequality. We show that I has at least two critical points when I satisfies one pair of Torus-Sphere variational linking inequality with $(P.S.)^*_c$ condition. We prove this result by use of the limit relative category and critical point theory on the manifold with boundary.

  • PDF

A Study on the Material Behavior of Glass Fiber Reinforced Thermoplastic Composite in Uniaxial Tension (유리 섬유 강화 열가소성 복합재료의 1축 인장시 재료거동에 대한 연구)

  • Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.96-101
    • /
    • 1996
  • Glass fiber reinforced polymeric composites hold considerable promise for increased use in low cost high volume applications because of the potential for processing by solid phase forming. Unfortunately, because of the wide variety of such materials, inherent bariability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Of particular importance is failure during processing due to localized necking instability, and it is this phenomenon that is primary focus of this study. The strain rate and temperature dependence is used to predict limiting tensile strains, based on Mackinack imperfection theory. Excellent correlation was obtained between theory and experiment, and the results are summarized in the limit strains as a function of temperature and stain rate.

  • PDF