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POLYNOMIALITY OF THE EQUIVARIANT

GROMOV-WITTEN THEORY OF Pr−1

Hyenho Lho

Abstract. We study the equivariant Gromov-Witten theory of Pr−1

for all r ≥ 2. We prove a polynomiality property in r of the Gromov-
Witten classes of Pr−1. Using this polynomiality property, we define a set

of polynomial valued classes in H∗(Mg,n) which generalize the limit of

Witten’s s-spin classes studied by Pandharipande, Pixton and Zvonkine.

1. Introduction

1.1. Overview

Since the study of relations in the cohomology of the moduli space of curves
by Mumford in the 1980s ([11]), there has been substantial progress in the
study of the structure of the tautological rings

RH∗(Mg,n) ⊂ H∗(Mg,n) .

We refer the reader to [1] for an introduction to the tautological rings.
Recently, certain polynomiality properties were proved in [7, 13] for sets

of classes in RH∗(Mg,n). Our main result is the proof of a polynomiality
property in r for a set of equivariant Gromov-Witten classes of Pr−1. Using
the polynomiality, we define a new set of classes

ΩP∞,d
g,A ∈ H2d(Mg,n)⊗Q[u, r]

for g, d ≥ 0 and A = (a1, . . . , an) ∈ Zn≥0 satisfying

g − 1 + d−
∑
i

ai = 0 .

For d = g−1, the new class, after restriction to u = 0, recovers the Witten’s
s-spin class ([13]) with r = s − 1. Finding a geometric interpretation of the

new class ΩP∞,d
g,A is an interesting question.
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1.2. Equivariant Gromov-Witten theory of Pr−1

For r ∈ N, the cohomological field theory (CohFT) associated to Pr−1 can
be constructed as follows. Let the algebraic torus

Tr = (C∗)r

act with the standard linearization on Pr−1 with weights λ0, . . . , λr−1 on the
vector space H0(Pr−1,OPr−1(1)).

Let Mg,n(Pr−1, d) be the moduli space of stable maps to Pr−1 equipped with
the canonical Tr-action, and let

π : Mg,n(Pr−1, d)→Mg,n

be the natural morphism forgetting the map. Let A = (a1, . . . , an) ∈ {0, . . . , r−
1}n. The Gromov-Witten classes of the Pr−1 are defined via the equivariant
push-forward

ΩPr−1

g,n (a1, . . . , an) =
∑
d≥0

qdπ∗

( n∏
i=1

ev∗i (H
ai) ∩ [Mg,n(Pr−1, d)]vir

)
.(1)

The sum (1) defines a polynomial valued class

ΩPr−1

g,A (q) := ΩPr−1

g,n (a1, . . . , an) ∈ H∗(Mg,n)⊗ C[q]

after the specialization

λi = ζir
for a primitive rth root of unity ζr.

Let V := H∗(Pr−1,C) be the cohomology ring of Pr−1 with basisH0, H1, . . . ,
Hr−1 and bilinear form

ηab = η(Ha, Hb) = δa+b,r−1 ,

and unit vector 1 = H0. The Gromov-Witten classes (1) define a CohFT by

ΩPr−1

g,n : V ⊗n → H∗(Mg,n)⊗C[q] , ΩPr−1

g,n (Ha1⊗· · ·⊗Han) = ΩPr−1

g,n (a1, . . . , an) .

The genus 0 sector defines a quantum product • on V with unit 1,

η(Ha •Hb, Hc) = ΩPr−1

0,3 (a, b, c) .

The resulting algebra is semisimple if and only if q 6= −1.

1.3. Tautological class via P∞

Here we state a polynomiality property in r of the class ΩPr−1

g,A . Denote by

ΩPr−1,d
g,A ∈ H2d(Mg,n)⊗ C[q]

the degree 2d part of the class ΩPr−1

g,A ∈ H∗(Mg,n)⊗ C[q] .

Theorem 1. For
∑n
i=1 ai = g − 1− d with ai ≥ 0, we have

(i) ΩPr−1,d
g,A ∈ H2d(Mg,n)⊗ C[q] is a polynomial in q of degree g − 1.
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(ii) The coefficient of qk for 0 ≤ k ≤ g − 1 in

ΩPr−1,d
g,A ∈ H2d(Mg,n)⊗ C[q]

is a polynomial in r for all sufficiently large r.

For A = (a1, . . . , an) ∈ Zn≥0 satisfying
∑n
i=1 ai = g − 1− d, we denote by

ΩP∞,d
g,A (q, r) ∈ H2d(Mg,n)⊗ C[q, r]

the polynomial valued class associated to ΩPr−1,d
g,A by Theorem 1. Via the change

of the variable

u = q + 1 ,

we define the kth polynomial class

ΩP∞,d
g,A,k ∈ H

2d(Mg,n)⊗ C[r]

for 0 ≤ k ≤ g − 1 to be the coefficient of uk in

ΩP∞,d
g,A (u, r) ∈ H2d(Mg,n)⊗ C[u, r] .

In [12], the authors proved a polynomiality property in s for Witten’s s-spin
class W s

g,n(a1, . . . , an).

Theorem 2 (Pandharipande, Pixton and Zvonkine [12]). For
∑n
i=1 ai = 2g−2,

sg−1W s
g,n(a1, . . . , an) ∈ H2(g−1)(Mg,n)

is a polynomial in s for all sufficiently large s.

For (d, k) = (g− 1, 0), the class (−1)g−1 ·ΩP∞,g−1
g,A,0 equals1 the polynomial in

Theorem 2 with r = s− 1. In [12], the following was conjectured.

Conjecture 3. For
∑n
i=0 ai = 2g − 2, we have

ΩP∞,g−1
g,A,0 (−1) = [Hg(a1, . . . , an)] ∈ H2(g−1)(Mg,n) .

Here, Hg(a1, . . . , an) is the class of the closure of the locus of holomorphic
differentials with multiplicities of the zeroes given by (a1, . . . , an). We refer the
reader to [12, Appendix] for an introduction to the moduli space of holomorphic

differentials. Finding a geometric interpretation of ΩP∞,d
g,A,k for (d, k) 6= (g− 1, 0)

is an interesting question.

1The (−1)g−1 factor is due to the fact that the R-matrix for Witten’s s-spin class differs

from the R-matrix for Ps−2 by a factor (−s).
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1.4. Stable graphs and strata

1.4.1. Summation over stable graphs. The strata of Mg,n are the substacks
parameterizing pointed curves of a fixed topological type. The moduli space
Mg,n is a disjoint union of finitely many strata.

The main result of the paper is the proof of an explicit formula for ΩP∞
g,A(u, r)

in the cohomology ring H∗(Mg,n) ⊗ C[u, r]. The formula is written in terms

of a summation over stable graphs Γ indexing the strata of Mg,n. We review

here the standard indexing of the strata of Mg,n by stable graphs.

1.4.2. Stable graphs. The strata of the moduli space of curves correspond to
stable graphs

Γ = (V,H,L, g : V → N, v : H → V, ι : H → H)

satisfying the following properties:

(i) V is a vertex set with a genus function g : V → N,
(ii) H is a half-edge set equipped with a vertex assignment v : H → V and

an involution ι,
(iii) The edge set E of Γ is defined by the 2-cycle of ι in H (self-edges at

vertices are allowed),
(iv) L, the set of legs, is defined by the fixed points of ι and is placed in

bijective correspondence with a set of markings,
(v) the pair (V,E) defines a connected graph,

(vi) for each vertex v, the stability condition holds:

2g(v)− 2 + n(v) > 0 ,

where n(v) is the valence of Γ at v including both half-edges and legs.

An automorphism of Γ consists of automorphisms of the sets V and H which
leave the structures L, g, v and ι invariant. Denote by Aut(Γ) the automorphism
group of Γ.

The genus of a stable graph Γ is defined by:

g(Γ) =
∑
v∈V

g(v) + h1(Γ) .

A stratum of Mg,n corresponding to Deligne-Mumford stable curves of fixed
topological type naturally determines a stable graph of genus g with n legs
by considering the dual graph of a generic pointed curve parameterized by the
stratum.

Let Gg,n be the set of isomorphism classes of stable graphs of genus g with
n legs. The set Gg,n is finite.

1.4.3. Strata algebra. To each stable graph Γ ∈ Gg,n, we associate the moduli
space

MΓ =
∏
v∈V

Mg(v),n(v) .
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Let

ξΓ : MΓ →Mg,n(2)

be the canonical morphism whose image is equal to the closure of the stratum
associated to the stable graph Γ. We require a family of stable pointed curves
over MΓ to construct ξΓ. Such a family is easily constructed by attaching
the pull-backs of the universal families over the Mg(v),n(v) along the sections
corresponding to the two halves of each edge in E(Γ).

Each half-edge h ∈ H(Γ) determines a cotangent line

Lh →MΓ .

For h ∈ L(Γ), Lh is the pull-back via ξΓ of the corresponding cotangent line of
Mg,n. If h is a side of an edge e ∈ E(Γ), then Lh is the cotangent line of the
corresponding side of a node. We write

ψh = c1(Lh) ∈ H2(MΓ,Q) .

Let Γ be a stable graph. A basic class on MΓ is defined to be a product of
monomials in κ classes at each vertex of the graph and powers of ψ classes at
each half-edge (including the legs),

γ =
∏
v∈V

∏
i≥0

κi[v]xi[v]
∏
h∈H

ψ
y[h]
h ∈ H∗(MΓ,Q) ,

where κi[v] is the ith kappa class on Mg(v),n(v). To avoid the trivial vanishing
of γ, we impose the condition∑

i≥0

ixi[v] +
∑

h∈H[v]

y[h] ≤ dimCMg(v),n(v) = 3g(v)− 3 + n(v)

at each vertex of Γ. Here, H[v] ⊂ H is the set of half-edges (including the legs)
incident at v.

Consider the Q-vector space Sg,n whose basis consists of the isomorphism
classes of pairs [Γ, γ] for stable graphs Γ of genus g with n legs and a basic class
γ on MΓ. Sg,n is finite dimensional, since there are only finitely many pairs
Γ, γ up to isomorphism.

Via the product on Sg,n defined by intersection theory with respect to the
morphism (2), Sg,n is a finite dimensional Q-algebra, called the strata algebra
[12]. Push-forward along ξΓ defines a canonical ring homomorphism

q : Sg,n → H∗(Mg,n,Q) , q([Γ, γ]) = ξΓ∗(γ)

from the strata algebra to the cohomology ring of the moduli space of curves.

1.5. Generalization of Pixton’s formula

The series

Bra(u, z) =
∑
k≥0

Brak(u)zk(3)
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will be defined in Section 3.2.
Let f(T ) be a power series with vanishing constant and linear terms,

f(T ) ∈ T 2Q[[T ]] .

We define

κ(f) =
∑
m≥0

1

m!
pm∗

(
f(ψn+1 · · ·ψn+m)

)
∈ H∗(Mg,n,Q) ,(4)

where pm is the canonical map which forgets the last m markings.

pm : Mg,n+m →Mg,n .

Due to the vanishing in degree 0 and 1 of f , the sum (4) is finite.

Definition 4. For k ∈ Z, define the class Ωr−1
g,A,k(u) by the term of degree k

(in variable u) of the mixed degree cohomology class

q
( ∑

Γ∈Gg,n

1

|Aut(Γ)|
[Γ, [

∏
v∈V

κv
∏
l∈L

ηl
∏
e∈E

∆e]x]
)
∈ H∗(Mg,n,Q)⊗ C[u

1
r , u−

1
r ],

where

• For v ∈ V , let κv =
(
r u

r−1
r

)gv−1

κ
(
T − TBr0(u,−xvT )

)
.

• For l ∈ L, let ηl = x−alvl
Bral(u,−xvlψl), where vl ∈ V is the vertex to which

the leg l is assigned.
• For e ∈ E, let

∆e =

∑r−1
i=0 (x′)−i(x′′)−r+1+i −

∑r−1
i=0 (x′)−iBri(u,−x′ψ′)(x′′)−r+1+iBr r−1−i(u,−x′′ψ′′)

ψ′ + ψ′′
,

where x′, x′′ are the x-variables assigned to the vertices adjacent to the edge
e and ψ′, ψ′′ are the ψ-classes corresponding to the half-edges.

For a polynomial
∏

in variables xv, the notation [
∏

]x means the term of degree
0 in all variables xv. The numerator of ∆e is divisible by the denominator due
to the identity

r−1∑
i=0

Bri(u, T )Br r−1−i(u,−T ) = r .

We write
ΩPr−1

g,A (u) :=
∑
k∈Z

uk ΩPr−1

g,A,k .

The following fundamental polynomiality property of Ωr−1
g,A can be proven

by the argument of [7, Section 4.6].

Proposition 5. For fixed g and A, the class

Ωr−1
g,A (u) ∈ H∗(Mg,n)⊗ C[u, u−1]

is a polynomial in r for all sufficiently large r.

Via the torus localization technique, we obtain the following result.
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Theorem 6. For g ≥ 0 and A ∈ {0, . . . , r − 1}n, we have

ΩPr−1

g,A = Ωr−1
g,A ∈ H

∗(Mg,n)⊗ C[u, u−1] .

By Proposition 5, Theorem 1 follows from Theorem 6. Since

ΩPr−1

g,A ∈ H∗(Mg,n)⊗ C[u] ,

the coefficients of uk for k < 0 in Ωr−1
g,A give us tautological relations in

H∗(Mg,n) whose coefficients are rational functions in r.

1.6. Plan of the paper

After a review of the localization formula for Pr−1 in the precise form re-
quired for the proof of the polynomiality property in Sections 2 and 3, Propo-
sition 5 and Theorem 6 are proven in Section 4.

Acknowledgments. I thank Y. Bae, H. Fan, F. Janda, R. Pandharipande,
J. Schmitt and L. Wu for discussions over the years about the moduli space of
curves and the tautological classes. This work was supported by research fund
of Chungnam National University.

2. Localization graphs

2.1. Torus action

Let T = (C∗)r act diagonally on the vector space Cr with weights

−λ0, . . . , λr−1 .

Let
p0, . . . , pr−1

be the T-fixed points of the induced T-action on Pr−1. The weights of T on
the tangent space Tpj (Pr−1) are given by

λj − λ0, . . . , λ̂j − λj , . . . , λj − λr−1 .

There is an induced T-action on the moduli space Mg,n(Pr−1, d) of stable maps.
The localization formula of [5] will play a fundamental role in our paper. The
T-fixed loci are represented in terms of dual graphs, and the contributions of the
T-fixed loci are given by tautological classes. The formulas here are standard,
see [4, 9].

2.2. Graphs

Let the genus g and the number of markings n for the moduli space be in
the stable range

2g − 2 + n > 0 .

We organize the T-fixed loci of Mg,n(Pr−1, d) according to decorated graphs.
A decorated graph Γ ∈ Gg,n(Pr−1) consists of the data (V,E,N, g, p) where

(i) V is the vertex set,
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(ii) E is the edge set (including possible self-edges),
(iii) N : {1, . . . , n} → V is the marking assignment,
(iv) g : V→ Z≥0 is a genus assignment satisfying

g =
∑
v∈V

g(v) + h1(Γ)

and for which (V,E,N, g) is a stable graph,
(v) p : V→ (Pr−1)T is an assignment of a T-fixed point p(v) to each vertex

v ∈ V.

We will often call the markings L = {1, . . . , n} legs. We write the localization
formula as ∑

d≥0

[Mg,n(Pr−1, d)]virqd =
∑

Γ∈Gg,n(Pr−1)

ContΓ .

While Gg,n(Pr−1) is a finite set, each contribution ContΓ is a series in q obtained
from an infinite sum over all edge possibilities.

2.3. Basic correlators

2.3.1. Overview. We review here basic series in q which arise in the genus 0
theory of Gromov-Witten invariants of Pr−1. We fix a torus action T = (C∗)r
on Pr−1 with weights

−λ0, . . . ,−λr−1

on the vector space Cr. The following specialization

λi = ζir(5)

will be imposed for our entire study of Pr−1. Here ζr is a primitive rth root of
unity.

2.4. First correlators

We require several correlators defined via Gromov-Witten invariants of Pr−1.
The first two are obtained from standard Gromov-Witten invariants. For γi ∈
H∗T(Pr−1), define

〈γ1ψ
a1 , . . . , γnψ

an〉g,n,d = π∗

(
[Mg,n(Pr−1, d)]vir ∩

n∏
i=1

ev∗i (γi)ψ
ai
)
,

〈〈γ1ψ
a1 , . . . , γnψ

an〉〉g,n =
∑
d≥0

qd

d!
〈γ1ψ

a1 , . . . , γnψ
an〉g,n,d,

where

π : Mg,n(Pr−1, d)→Mg,n

is the canonical morphism which forgets the map. For each T-fixed point
pi ∈ Pr−1, let

ei = e(TpiPr−1)
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be the equivariant Euler class of the tangent space of Pr−1 at pi. Let

φi =

∏
j 6=i(H − λj)

ei
, φi = eiφi ∈ H∗T(Pr−1)

be cycle classes.
The following series will play a fundamental role in our paper.

Si(γ) = ei〈〈
φi

z − ψ
, γ〉〉0,2 ,

Vij = 〈〈 φi
x− ψ

,
φj

y − ψ
〉〉0,2 .

Unstable degree 0 terms are included by hand in the above formulas. The

unstable degree 0 term for Si(γ) (resp. Vij) is γ|pi (resp.
δij

ei(x+y) ). We write

S(γ) =

r−1∑
i=0

φiSi(γ) .

The series Si and Vij satisfy the basic relation

eiVij(x, y)ej =

∑r−1
k=0 Si(φk)|z=xSj(φk)|z=y

x+ y
(6)

which follows from the WDVV equation ([4]).

2.5. Further calculations

Define the I-function by

I(q) =

∞∑
d=0

qd∏r−1
i=0

∏d
k=1(H − λi + kz)

∈ H∗T(Pr−1)⊗ C[[q,
1

z
]] .

Define differential operators

D = q
d

dq
, M = H + zD .(7)

Using Birkhoff factorization, an evaluation of the series S(Hj) can be obtained
from the I-function, see [8, 10]:

S(1) =I ,

S(Hj) =MS(Hj−1) for 1 ≤ j ≤ r − 1 ,(8)

S(Hr) =
MS(Hr−1)

Lrr
.

Here, Lr(q) = (1 + q)
1
r . The function I satisfies the following Picard-Fuchs

equation (
Mr − 1− q

)
I = 0 .(9)
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The restriction I|H=λi admits the following asymptotic form

I|H=λi = eµλi/z
(
R0 +R1

( z
λi

)
+R2

( z
λi

)2

+ · · ·
)

(10)

with series µ,Rk ∈ C[[q]] .
A derivation of (10) can be obtained via the Picard-Fuchs equation (9) for

I|H=λi . The series µ and Rk are found by solving differential equations obtained
from the coefficient of zk. For example,

1 + Dµ = Lr ,

R0 = L
1−r
2

r ,

R1 =
L
− 1+3r

2
r

24 r
(r − 1)(−2r − 1 + (1 + r)Lrr + rL1+r

r ) ,

R2 =
L
− 3+5r

2
r

1152 r2
(r − 1)(23 + 69r + 48r2 + 4r3 − 2Lrr(23 + 46r + 25r2 + 2r3)

− 2L1+r
r r(−1− r + 2r2) + L2r

r (23 + 23r + r2 + r3)

+ 2L2r+1
r r(−1 + r2) + L2r+2

r (r − 1)r2) .

The specialization (5) is used for these results.
From the equations (8) and (10), we can show the series S(Hj) have the

following asymptotic expansions:

Si(H
j) = e

µλi
z

∑
k≥0

Rkj

( z
λi

)k
for 0 ≤ j ≤ r .(11)

The following constraints play a fundamental role for the proof of polynomiality
in Proposition 5.

Proposition 7. For all k ≥ 0, we have

Rki = Pk(i, r)

with Pk(w, v) ∈ C[L
± 1

2
r ][w, v, v−1], where w, v are formal variables.

Proof. By induction on k, we prove that there exists a polynomial Pk(w, v)
such that Rki = Pk(i, r). By applying (11) to (8), we have

Rki = LrRk i−1 + DRk−1 i−1 .(12)

By applying the above equation repeatedly, we obtain the following equation

Rki = LirRk +

i−1∑
j=0

Li−1−j
r DRk−1 j .(13)

Especially we have

R0i = LirR0 = L
1−r+2i

2
r

and therefore the induction hypothesis is true for k = 0.
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Now suppose the induction hypothesis is true for l ≤ k − 1. Since Rlj =

Pl(j, r) for some Pl(w, v) ∈ C[L
± 1

2
r ][w, v, v−1], we also have DRlj = P̃l(j, r) for

some P̃l(w, v) ∈ C[L
± 1

2
r ][w, v, v−1]. Therefore the sum in the equation (13)

i−1∑
j=0

Li−1−j
r DRlj = Qli(S0(i− 1), S1(i− 1), . . . Snli(i− 1), r)

for some nli ∈ N and Qli ∈ C[L
± 1

2
r ][w1, w2, . . . , wnli , v, v

−1]. Here Sa(b) =∑b
s=0 s

a for a, b ∈ Z≥0. Since Sa(i− 1) is a polynomial in i for all a ∈ Z≥0, we
conclude

i−1∑
j=0

Li−1−j
r DRlj = Q̃li(i, r)(14)

for some Q̃li(w, v) ∈ C[L
± 1

2
r ][w, v, v−1]. By applying (9) to the case (l, i) =

(k + 1, r) of (13), we obtain

r−1∑
j=0

Lr−1−j
r DRkj = 0 .

Applying the argument of (14) to the above equation, we have

D(L
r−1
2

r Rk) +Wk(r) · DLr = 0

for some Wk(v) ∈ C[L
± 1

2
r ][v, v−1]. By solving the above differential equation

for Rk, we conclude

Rk = P̃k(r)

for some P̃k(v) ∈ C[L
± 1

2
r ][v, v−1].

Finally using (13), we have

Rki = Pk(i, r)

for some Pk(w, v) ∈ C[L
± 1

2
r ][w, v, v−1] satisfying

Pk(0, v) = P̃k(v) . �

3. Higher genus series on Pr−1

3.1. Higher genus reconstruction theory

We review here the now standard method first used by Givental [4,9,10] to
express genus g correlators in terms of genus 0 data.

Let Γ ∈ Gg,n(Pr−1) be a decorated graph defined in Section 2. The flags of Γ
are the half-edges. Denote by F the set of flags. From the standard argument
of the torus localization technique, we obtain the following result.
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Proposition 8 (Givental [4]). We have

〈〈Ha1 , . . . ,Han〉〉g,n

=
∑

Γ∈Gg,n(Pr−1)

1

|Aut(Γ)|
[Γ, [

∏
κv
∏

ηl
∏

∆e]] ∈ H∗(Mg,n)⊗ C[[q]] ,

where

• For v ∈ V, let κv = Hodgev(
1
R00

)2g(v)−2+n(v) κ
(
T−T e

µλp(v)
T

(
Sp(v)(1)(−T )

R00

))
,

where

Hodgev =

∏g
s=1

∏
j 6=p(v)(λp(v) − λj − ρs)

ep(v)

with Chern roots ρ1 . . . ρg of the Hodge bundle on Mg(v),n(v).

• For l ∈ L, let ηl = e
µλv(l)
ψl

(
Sp(v(l))(H

al)(−ψl)
)

, where v(l) ∈ V is the vertex

to which the leg is attached.
• For e ∈ E, let

∆e = e
µλp(v′)
ψ′ +

µλp(v′′)
ψ′′ Vp(v′),p(v′′)(−ψ′,−ψ′′),

where ψ′, ψ′′ are the ψ-classes corresponding to the half-edges assigned to
v′, v′′.

3.2. Grothendieck-Riemann-Roch formula

Using Mumford’s Grothendieck-Riemann-Roch formula [11], we can remove
the factor Hodgev at each vertex v in the localization formula of

〈〈Ha1 , . . . ,Han〉〉g,n
in Proposition 8 by modifying the edge terms.

Define a new series Bij(z) in z by

Bij(z) := Exp
(
−
∑
k≥0

z2k−1

∑
s 6=i(λi − λs)1−2k

2k − 1

B2k

2k

)(∑
k≥0

Rkj

( z
λi

)k)
.(15)

In Section 4, the polynomiality of the series

Bij(z) ∈ C[L
± 1

2
r , z]

will be proven. We define the series Brj(u, z) ∈ C[u, z] by the following equation

B0
j (z) = L

−1+r−2j
2

r Brj(L
r
r, z) .(16)

Proposition 9. We have

〈〈Ha1 , . . . ,Han〉〉g,n

=
∑

Γ∈Gg,n(Pr−1)

1

|Aut(Γ)|
[Γ, [

∏
κv
∏

ηl
∏

∆e]] ∈ H∗(Mg,n,Q)⊗ C[[q]] ,

where
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• For v ∈ V, let κv = e
g(v)−1
p(v) ( 1

R00
)2g(v)−2+n(v) κ

(
T − 1

R00
B

p(v)
0 (−T )

)
.

• For l ∈ L, let ηl =
(
Balp(v(l))(−ψl)

)
, where v(l) ∈ V is the vertex to which

the leg is attached.
• For e ∈ E, let

∆e =

∑r−1
i=0 B

p(v′)
i (0)B

p(v′′)
r−1−i(0)−

∑r−1
i=0 B

p(v′)
i (−ψ′)Bp(v′′)

r−1−i(−ψ′′)
ψ′ + ψ′′

,

where ψ′, ψ′′ are the ψ-classes corresponding to the half-edges assigned to
v′, v′′.

Proof. Using the Grothendieck-Riemann-Roch formula [11] at each vertex term,
we can remove the factor Hodgev at each vertex v in the localization formula
of 〈〈Ha1 , . . . ,Han〉〉g,n in Proposition 8 by modifying the half edge terms by
(15). See [4, Section 2.3] for more explanations.

The proof of the proposition follows by applying (6), (11) to the localization
formula of 〈〈Ha1 , . . . ,Han〉〉g,n in Proposition 8 after the previous vertex-half
edge modification. �

4. Polynomiality

4.1. R-matrix

Define the polynomial Pka ∈ C[Lr] in Lr by the following normalization:

Rka = L
1−r−2k(1+r)+2a

2
r Pka .

Applying the equation (8) to the asymptotic expansions (11) of Si(H
a), we

obtain recursive relations for Pka.

Lemma 10. The polynomials Pka satisfy the relations

Pka = Pk a−1 +
(1− r)− 2(k − 1)(r + 1) + 2(a− 1)

2r
(Lrr − 1)Pk−1 a−1

+ LrrDPk−1 a−1 ,

Pk0 = Pkr .

Proof. Applying the equation (8) to the asymptotic expansions (11) of Si(H
a),

we obtain the first equation using

DL =
L1−r
r

r
(Lrr − 1) .

The second equation follows from the third equation in (8). �

Let

Pka(0) = Pka|Lr=0 .

From the constant term with respect to Lr in the equations of Lemma 10, we
obtain:
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Lemma 11. The restrictions Pka(0) satisfy the relations

Pka(0)− Pk a−1(0) =
1

2r
((2k − 1)(r + 1)− 2a)Pk−1 a−1(0) ,

Pk0(0) = Pkr(0) .

Remark 12. The equations for Pka(0) in the above Lemma equal the equation
for Pk(r+1, a) in [12, Lemma 4.3] up to a factor 1/r. Therefore the solutions of
the equations in the above Lemma will differ from the solutions of the equation
in [12, Lemma 4.3] by the factor (1/r)k.

4.2. Equivariant mirror of Pr−1

We review here an explicit description of the oscillating integrals on the
mirror manifold of Pr−1 in [2]. Givental introduced the mirror manifold for
Pr−1

{(T0, . . . , Tr−1) | eT0 · · · eTr−1=q ⊂ Cr}

with superpotential

F(T ) =

r−1∑
j=0

(eTj + λjTj) .

Consider the integrals given by

Ii = e−ln(q)λi/z(−2πz)
−(r−1)

2

∫
Γi⊂{

∑
Tj=ln q}

eF(T )/zω

along (r − 1)-cycles Γi through a specific critical point of the superpotential F

which can be constructed via the Morse theory of the real part of F(T )
z . Here,

ω is the restriction of dT0 ∧ · · · ∧ dTr−1 to Γi.
There are r critical points of F at which the integral Ii admits a stationary

phase expansion. Let Zi be the solution to

r−1∏
i=0

(X − λi) = q

with limit λi as q → 0. For each i, if we choose the critical point Tj =
ln(Zi − λj), the factor

e
ui
z := Exp

(( r−1∑
j=0

(Zi − λj + λj ln(Zi − λj))− λiln q
)
/z
)

is well defined in the limit as q → 0. Via the shift of the integral to the critical
point and re-scaling of coordinates by

√
z, we have

Ii = e
ui
z

∫
Exp

(
−
∑
j

(Zj − λj)
∞∑
k=3

T kj (−z)(k−2)/2

k!

)
dµi ,(17)



POLYNOMIALITY OF THE EQUIVARIANT G-W THEORY OF Pr−1 587

where dµi is the Gaussian distribution

(2π)
r−1
2 Exp

(
−
∑
j

(Zi − λj)
T 2
j

2

)
.

In order to find the asymptotic expansion, we formally expand the exponential
in (17) and integrate over the real part of the image of the mirror. The integrals
are moments of µi which can be calculated via the covariance matrix

σi(Tk, Tl) =

{
− 1

∆i

∏
j /∈{k,l}(Zi − λj) for k 6= l ,

1
∆i

∑
m6=k

∏
j /∈{k,m}(Zi − λj) for k = l .

From the vanishing of odd moments of Gaussian distributions, we find that the

asymptotic expansion of e−
ui
z Ii is a power series in the variable z.

In conclusion, we obtain the following asymptotic expansion

Ii = e
ui
z · L

1−r
2

r Fr

( z

λiL
r+1
r

, Lrr

)
,

with Fr(x, y) ∈ C[x, y].

From the mirror theorem for Pr−1, we have the following result.

Theorem 13 (Givental [3, Section 10]). We have the equality of power series
in z,

Bi0(z) = L
1−r
2

r Fr

( z

λiL
r+1
r

, Lrr

)
.

We do not know the closed form of Fr(x, y). For r = 2, we obtain the
following result from the argument in [6, Section 3.3].

F2(x, 0) =
∑
i≥0

(6i)!

(3i)!(2i)!

(−x
576

)i
.

4.3. Proof of Proposition 5

Definition 14. Consider a stable graph Γ of genus g with n+ k marked legs.
A weighting a of Γ is a function on the set of half-edges

H(Γ)→ {0, . . . , r − 1} , h 7→ ah

satisfying the following conditions:

(i) If h and h′ are the two half-edges of a edge, then ah + ah′ = r − 1,
(ii) If h corresponds to the leg i for 1 ≤ i ≤ n, then ah = ai,
(iii) If h is a κ-leg, then ah = 0.

Let Γ be a stable graph with n+ k legs. Let m be a function

m : H(Γ)→ N , h 7→ mh

satisfying the conditions

(i)
∑
j∈H(Γ)mh = d+ |E(Γ)|,

(ii) If h and h′ are the two half-edges of a edge, then (mh,mh′) 6= (0, 0).
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Define the sum

SΓ,m =
∑

weighting a

pk∗{
∏
v

xgv−1
v

∏
h

Br ahmhx
mh−ah
v }x ,

where pk : Mg,n+k →Mg,n is the map which forgets the last k markings. Here
we recall the series Bra(z) :=

∑
k≥0Brakz

k in (3). Since we can write the
coefficient of the formula of Definition 4 in terms of ±SΓ,m, the polynomiality
assertion of Proposition 5 follows from the following lemma.

Lemma 15. The sum SΓ,m is a polynomial in r for all sufficiently large r.

Proof. The proof here follows closely the argument in [13, Section 4.6]. Let Γ′

be the graph obtained from Γ by adding a vertex at the end of each leg and
in the middle of each edge. Let M be the edge-vertex adjacency matrix of Γ′.
The matrix M satisfies the assumptions of [7, Proposition A1]. The vertex x
of [7, Proposition A1] assigns an integer xh to each edge of Γ′ or, equivalently
to each half-edge h of Γ′. The vectors a and b of [7, Proposition A1] assign an
integer to each vertex of Γ′. We summarizes what these integers are for each
vertex of Γ′ and what conditions are imposed by the equation

Mx = a + rb .(18)

type of vertex of Γ′ a b effect on x
midpoint of edge
h− h′ in Γ

r − 1 0 xh + xh′ = r − 1

endpoint of leg h in
Γ

ah 0 xh = ah

vertex v of Γ gv − 1 +
∑
h7→vmh bv

TopFT condition
from the variable
xv

The conditions on x imply that x is a weighting of Γ′. For each weighting a,
we can find the unique solution (a, b) of the equation (18). For a given graph Γ
and a given choice of integers mh, there are only finitely many possible values
bv. Therefore, the sum SΓ,m over all weightings can be decomposed into a finite
number of sums of the form of [7, Proposition A1]. Hence, the polynomiality
of SΓ,m follows from [7, Proposition A1]. �

4.4. Proof of Theorem 6

The formula is essentially a reformulation of the localization formula of
Proposition 9 using (16). We give a few more explanations.

TopFT conditions at the vertices. The powers of xv keep track of the re-
mainders modulo r. More precisely, xk−j is assigned to the factor Rkj . There-
fore the coefficients of ψm in the formulas come with an mth power of the
corresponding vertex variable.
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Powers of ru
r−1
r at the vertices. The factor r corresponds to epv and

u(r−1)/r = (1 + q)(r−1)/r corresponds to R00 = L
(1−r)/2
r at each vertex. Here,

we recall Lr := (1 + q)1/r. The factor (R00)−n(v) at the vertex v in the formula
of Proposition 9 is absorbed into the edge factors in the formula of Definition
4.

4.5. Examples

We give a few examples of ΩP∞,d
g,A . For g − 1 = d and

∑
i ai = 2(g − 1), the

results here coincide with Witten’s classes calculated in [13, Section A.3]. More

precisely, we have ΩP∞,g−1
g,A |u=0 = (−s)g−1W s

g,A with r = s− 1. For the results
here, Conjecture 3 was verified using classical results in the moduli of curves
in [13, Section A.3].

Genus 1. For A = (0, . . . , 0), we have

ΩP∞,0
1,A = r ∈ H0(M1,n)⊗ C[u] .

Genus 2, n = 1, a1 = 1, d = 0. For A = (1), we have

ΩP∞,0
2,A = ru ∈ H0(M2,1)⊗ C[u] .

Genus 2, n = 2, a1 = 2, d = 1. Let δsep, δnonsep be the classes in H2(M2,1),
where the indices sep and nonsep refer to the boundary divisors with a sepa-
rating or a nonseparating node. The kappa class κ1 satisfies

κ1 = ψ1 +
7

5
δsep +

1

5
δnonsep .

For A = (2), we have

ΩP∞,1
2,A =

(
− 1

24
r(r − 1)(2r + 1) +

1

24
r(r2 − 1)u

)
κ1

+
( 1

24
r(2r2 − 25r + 47)− 1

24
r(r2 − 24r + 47)u

)
ψ1

+
( 1

24
r(r − 1)− 1

24
r(r − 1)(r + 1)u

)
δnonsep

+
(
− 1

24
r(r − 1)(2r − 11) +

1

24
r(r − 1)(r − 11)u

)
δsep

∈ H2(M2,1,Q)⊗ C[u] .

Genus 2, n = 2, a1 = a2 = 1, d = 1.

• Let α be the locus of curves with a rational component carrying both
markings and a genus 2 component,
• Let β be the locus of curves with two elliptic components carrying one

marking each,
• Let γ be the locus of curves with two elliptic components one of which

carries both markings and the other one no markings,
• Let δnonsep be the locus of curves with a nonseparating node.
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For A = (1, 1), we have

ΩP∞,1
2,A =

(
− 1

24
r(r − 1)(2r + 1) +

1

24
r(r − 1)(r + 1)u

)
κ1

+
( 1

24
r(r − 1)(2r − 11)− 1

24
r(r − 1)(r − 11)u

)
(ψ1 + ψ2)

+
(
− 1

24
r(2r2 − 25r + 47) +

1

24
r(r2 − 24r + 47)u

)
α

+
(
− 1

24
r(r − 1)(2r + 1) +

1

24
r(r − 1)(r + 1)u

)
β

+
(
− 1

24
r(r − 1)(2r − 11) +

1

24
r(r − 1)(r − 11)u

)
γ

+
( 1

24
r(r − 1)− 1

24
r(r − 1)(r + 1)u

)
δnonsep

∈ H2(M2,2)⊗ C[u] .
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