• Title/Summary/Keyword: limit cycles

Search Result 193, Processing Time 0.023 seconds

Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries (이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성)

  • Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

A Study on the Shear Behavior of Reinforced Concrete Structures (철근(鐵筋)콘크리트 구조물(構造物)의 전단거동(剪斷擧動)에 관한 연구(研究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.83-92
    • /
    • 1987
  • Fatigue fracture of reinforced concrete structures are characterized by considerably larger strains and microcracking as compared to fracture of R.C. structures under static loading. The strain of stirrup is increased suddenly by the occuring of inclined crack and the average strain ${\epsilon}_{\omega}$ of all stirrups in a structure at maximum load increase approximately in proportion to log N. The structures critical in longitudinal reinforcement seemed to have an endurance limit of 60~70 percent of static ultimate strengths for 1,000,000 cycles. In this test, the average fatigue strength at 1,000,000 cycles for all structures tested was approximately 65 percent of the static ultimate strength.

  • PDF

LDPC Code Design and Performance Analysis for Distributed Video Coding System (분산 동영상 부호화 시스템을 위한 LDPC 부호 설계 및 성능 평가)

  • Noh, Hyeun-Woo;Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.34-42
    • /
    • 2012
  • Low density parity check (LDPC) code is widely used, since it shows superior performance close to Shannon limit and its decoding complexity is lower than turbo code. Recently, it is used as a channel code to decode Wyner-Ziv frames in distributed video coding (DVC) system. In this paper, we propose an efficient method to design the parity check matrix H of LDPC codes. In order to apply LDPC code to DVC system, the LDPC code should have rate compatibility. Thus, we also propose a method to merge check nodes of LDPC code to attain the rate compatibility. LDPC code is designed using ACE algorithm and check nodes are merged for a given code rate to maximize the error correction capability. The performance of the designed LDPC code is analyzed extensively by computer simulations.

Effect of Alloying on the Microstructure and Fatigue Behavior of Fe-Ni-Cu-Mo P/M Steels

  • Bohn, Dmitri A.;Lawley, Alan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.34-34
    • /
    • 1997
  • The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered($1120{\circ}C$/30 min.) in 7Sv/o $H_2$/25v/o $N_2$ to densities in the range 6.77-7.2 g/$cm^3$. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x$l0^6$ was used for the comparison of fatigue strengths. For load cycles <3x$l0^5$, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x$l0^6$, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.

  • PDF

Durability and Characteristics of Ag-Pd Rod Heater for Bidet Fabricated by Screen Printing Process (스크린 프린팅 공정에 의해 제조된 비데용 Ag-Pd 봉형 발열체의 내구성 및 물성 평가 )

  • Tae-Ung Park;Da-Eun Hyun;Ik-Soo Kim;Sung-Chul Lee;Yeon-Sook Lee;Yong-Nam Kim;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.81-87
    • /
    • 2023
  • Heaters using the resistance heating principle are used in various industrial fields that require heat and are also essentially used in bidet among small home appliances. A planar heater and a coil-inserted heater mounted on a conventional commercially used bidet have disadvantages and limitations of complicated manufacturing process and local heating. In this study, silver-palladium (Ag-Pd) powder material was used for a screen-printing process that is more advantageous in achieving simplification than the existing process, and a rod-type heater for bidet was manufactured. The on-off cycle test under actual conditions was conducted to confirm the durability and the capability of the fabricated heater, and the fabricated heater operated more than 2,600 on-off cycles, which means it could be applied for a commercial product. In addition, through the on-off cycles under harsh conditions, the cause of failure was identified after the test that the durability limit temperature of the heater was 850℃. Through Ag-Pd rod heater in this study, it is expected to contribute to the efficient development of electrode materials for heaters and the improvement of the durability of heaters in the future.

A Study on Occupational Environment Assessment Strategies for Respirable Particulate Matter at Coal-Fired Power Plants (석탄화력발전소 호흡성분진 작업환경 평가 전략 사례에 관한 연구)

  • Eun-Seung Lee;Yun-Keun Lee;Dong-Il Shin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.375-383
    • /
    • 2023
  • Objectives: Coal-fired power plants feature diverse working conditions, including multi-layered employment structures and irregular work cycles due to outsourcing and non-standardized tasks. The current uniform occupational environment measurement systems have limitations in accurately assessing and evaluating these varied conditions. This study aims to propose alternative measurement and assessment strategies to supplement existing methods. Methods: Major domestic coal-fired power plants were selected as the study targets. To prepare for the study and establish strategies, work processes were identified and existing occupational environment measurement results were compared and analyzed. The study proceeded by employing three strategies: specific exposure groups (SEGs) measurement, continuous monitoring, and supplementary measurements, which were then compared and discussed. Results: Previous exposure index evaluations (5,268 cases) indicated that crystalline silica, a type of respirable particulate matter, had detection limits below the threshold (non-detectable) in 82.6% (4,349 cases) of instances. Exposures below 10% of the exposure limit were observed at a very low concentration of 96.1%. Similar exposure group measurements yielded results where detection limits were below the threshold in 38.2% of cases, and exposures below 10% of the limit were observed in 70.6%. Continuous monitoring indicated detection limits below the threshold in 12.6% of cases, and exposures below 10% of the limit were observed in 75.6%. Instances requiring active workplace management accounted for more than 30% of cases, with SEGs at 11.8% (four cases), showing a higher proportion compared to 3.0% (four cases) in continuous monitoring. For coal dust, exposures below 10% of the limit were highest in legal measurements at 90.2% (113 cases), followed by 74.0% (91 cases) in continuous monitoring, and 47.0% (16 cases) in SEGs. Instances exceeding 30% were most prevalent in SEGs at 14.7% (five cases), followed by legal measurements at 5.0% (eight cases), and continuous monitoring at 2.4% (three cases). When examining exposure levels through arithmetic means, crystalline silica was found to be 104.7% higher in SEGs at 0.0088 mg/m3 compared to 0.0043 mg/m3 in continuous monitoring. Coal dust measurements were highest in SEGs at 0.1247 mg/m3, followed by 0.1224 mg/m3 in legal measurements, and 0.0935 mg/m3 in continuous monitoring. Conclusions: Strategies involving SEGs measurement and continuous monitoring can enhance measurement reliability in environments with irregular work processes and frequent fluctuations in working conditions, as observed in coal-fired power plants. These strategies reduce the likelihood of omitting or underestimating processes and enhance measurement accuracy. In particular, a significant reduction in detection limits below the threshold for crystalline silica was observed. Supplementary measurements can identify worker exposure characteristics, uncover potential risks in blind spots of management, and provide a complementary method for legal measurements.

Variation of Material Characteristics of a Hot-formed AZ31 Magnesium Alloy (마그네슘 합금 AZ31의 온간성형과 재료특성변화에 관한 연구)

  • Suh, Chang-Min;Hor, Kwang-Ho;Kim, Hyo-Min;Suh, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.913-919
    • /
    • 2013
  • Magnesium alloys are known to be hard-forming materials at room temperature owing to their material structure. This study analyzes the optimal temperature conditions of warm-forming and the forming process by using a high-pressure laminating test and FM analysis, respectively. The effect of temperature on the fatigue limit was examined from the collected specimens by analyzing the material properties after the fatigue test. The material formed at a temperature of $230^{\circ}C$ shows occasional defects, but the best forming quality was obtained at $270^{\circ}C$. The optimal temperature for the forming process was found to be $250^{\circ}C$ considering the material quality and thermal efficiency. The overall fatigue life of specimens decreases with an increase in the processing temperature. The fatigue limit of AZ31 formed at $250^{\circ}C$ was approximately 100 MPa after $10^6$ cycles.

Secure Data Transaction Protocol for Privacy Protection in Smart Grid Environment (스마트 그리드 환경에서 프라이버시 보호를 위한 안전한 데이터 전송 프로토콜)

  • Go, Woong;Kwak, Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1701-1710
    • /
    • 2012
  • Recently, it has been found that it is important to use a smart grid to reduce greenhouse-gas emissions worldwide. A smart grid is a digitally enabled electrical grid that gathers, distributes, and acts on information regarding the behavior of all participants (suppliers and consumers) to improve the efficiency, importance, reliability, economics, and sustainability of electricity services. The smart grid technology uses two-way communication, where users can monitor and limit the electricity consumption of their home appliances in real time. Likewise, power companies can monitor and limit the electricity consumption of home appliances for stabilization of the electricity supply. However, if information regarding the measured electricity consumption of a user is leaked, serious privacy issues may arise, as such information may be used as a source of data mining of the electricity consumption patterns or life cycles of home residents. In this paper, we propose a data transaction protocol for privacy protection in a smart grid. In addition, a power company cannot decrypt an encrypted home appliance ID without the user's password.

Heat Dissipation Technology of IGBT Module Package (IGBT 전력반도체 모듈 패키지의 방열 기술)

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Kim, Young-Hun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon;Lee, Jin-Woo
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.55-64
    • /
    • 2007
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it and other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.