DOI QR코드

DOI QR Code

Variation of Material Characteristics of a Hot-formed AZ31 Magnesium Alloy

마그네슘 합금 AZ31의 온간성형과 재료특성변화에 관한 연구

  • Received : 2012.12.10
  • Accepted : 2013.04.08
  • Published : 2013.07.01

Abstract

Magnesium alloys are known to be hard-forming materials at room temperature owing to their material structure. This study analyzes the optimal temperature conditions of warm-forming and the forming process by using a high-pressure laminating test and FM analysis, respectively. The effect of temperature on the fatigue limit was examined from the collected specimens by analyzing the material properties after the fatigue test. The material formed at a temperature of $230^{\circ}C$ shows occasional defects, but the best forming quality was obtained at $270^{\circ}C$. The optimal temperature for the forming process was found to be $250^{\circ}C$ considering the material quality and thermal efficiency. The overall fatigue life of specimens decreases with an increase in the processing temperature. The fatigue limit of AZ31 formed at $250^{\circ}C$ was approximately 100 MPa after $10^6$ cycles.

본 연구에서는 마그네슘 합금 AZ31을 적용한 배터리 팩 케이스를 개발하여 자체 진동 및 외부 충격으로부터 배터리를 보호하도록 하며, 기존 스틸 소재 대비 50% 이상 경량화하여 친환경 기술개발을 목적으로 한다. 또한, 제품의 복잡한 형상 및 마그네슘 소재의 특성으로 제품을 성형하기에는 힘든 측면이 많으므로 이를 해결하기 위해 마그네슘 합금소재의 온도별 최적성형조건을 제시하고자 한다. 즉 AZ31의 성형방법에 따라 상온, $230^{\circ}C$, $250^{\circ}C$$270^{\circ}C$의 4가지 조건하의 시험편으로 인장시험, 경도시험, 부식시험 및 피로시험 등을 실시하여 기계적 특성을 정량적으로 분석하였고, 또 FEM해석을 통하여 자동차 부품 배터리 팩 케이스 개발에 적용토록 하였다.

Keywords

References

  1. Tokaji, K., Kamakura, M., Ishiizumi, Y. and Hasegawa, N., 2004, "Fatigue Behaviour and Fracture Mechanism of a Rolled AZ31 Magnesium Alloy," International Journal of Fatigue, Vol. 26, pp. 1217-1224. https://doi.org/10.1016/j.ijfatigue.2004.03.015
  2. Mordike, B.L. and Ebert, T., 2001, "Magnesium Properties-Application-Potential" Materials Science & Engineering, Vol. 302, pp. 37-45 https://doi.org/10.1016/S0921-5093(00)01351-4
  3. Yin, S.M., Yang, H.J., Li, S.X., Wu, S.D. and Yang, F., 2008, "Cyclic Deformation Behavior of as-Extrude Mg-3%Al-1%Zn," Script Material, Vol. 58, pp. 751-754. https://doi.org/10.1016/j.scriptamat.2007.12.020
  4. Choi, S.S., 2009, "Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy," Trans. Korean Soc. Mech. Eng. A, Vol. 33. No. 8, pp. 707-719. https://doi.org/10.3795/KSME-A.2009.33.8.707
  5. Park, C.W. and Kim, H.Y., 2012, "Analysis of Tube Extrusion Process Conditions Using Mg Alloy for Automotive Parts," Trans. Korean Soc. Mech. Eng. A, Vol. 36. No. 12, pp. 1675-1682. https://doi.org/10.3795/KSME-A.2012.36.12.1675
  6. Chung, C.S., Chun, D.K. and Kim, H.K., 2005, "Fatigue Properties of Fine Grained Magnesium Alloys After Sever Plastic Deformation," Journal of Mechanical Science and Technology, Vol. 19. No. 7, pp. 1441-1448.
  7. Ishihara, S., McEvily, A. J., Sato, M., Shibath, H., Goshima, T. and Shimizu, M., 2008, "Fatigue Lives and Crack Propagation Behavior of the Extruded Magnesium Alloy Processed Under Various Extrusion Conditions," Journal of Solid Mechanics and Materials Engineering, Vol. 2, No. 4, pp. 487-495. https://doi.org/10.1299/jmmp.2.487
  8. Ishihara, S., Nan, Z. and Goshima, T., 2007, "Effect of Microstructure on Fatigue Behavior of AZ31 Magnesium Alloy," Materials Science & Engineering, Vol. 468-470, pp. 214-222. https://doi.org/10.1016/j.msea.2006.09.124